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Abstract. We study (`, `)-isogeny graphs of principally polarised super-
singular abelian surfaces (PPSSAS). The (`, `)-isogeny graph has cycles
of small length that can be used to break the collision resistance assump-
tion of the genus two isogeny hash function suggested by Takashima.
Algorithms for computing (2, 2)-isogenies on the level of Jacobians and
(3, 3)-isogenies on the level of Kummers are used to develop a genus two
version of the supersingular isogeny Diffie–Hellman protocol of Jao and
de Feo. The genus two isogeny Diffie–Hellman protocol achieves the same
level of security as SIDH but uses a prime with a third of the bit length.

Keywords: Post-quantum cryptography · Isogeny-based cryptography
· Cryptanalysis · Key exchange · Hash function

1 Introduction

Isogeny-based cryptography involves the study of isogenies between abelian va-
rieties. The first proposal was an unpublished manuscript of Couveignes [6] that
outlined a key-exchange algorithm set in the isogeny graph of elliptic curves.
This was rediscovered by Rostovtsev and Stolbunov [18]. A hash function was
developed by Charles, Goren and Lauter [4] that uses the input to the hash to
generate a path in the isogeny graph and outputs the end point of the path.
Next in the line of invention is the Jao–de Feo cryptosystem [12] which relies
on the difficulty of finding isogenies with a given degree between supersingular
elliptic curves. A key exchange protocol, called the Supersingular Isogeny Diffie–
Hellman key exchange (SIDH), based on this hard problem, was proposed in the
same paper. The authors proposed working with 2-isogenies and 3-isogenies for
efficiency.

Elliptic curves are principally polarised abelian varieties of dimension one,
hence we can turn to principally polarised abelian varieties of higher dimension
when looking to generalise isogeny-based cryptosystems. As noted by Takashima
elliptic curves have three 2-isogenies but abelian surfaces (abelian varieties of
dimension 2) have fifteen (2, 2)-isogenies. Hence, this motivates the use of abelian
surfaces for use in these cryptosystems.

In this work, we will focus on principally polarised supersingular abelian vari-
eties of dimension two, which we call principally polarised supersingular abelian
surfaces (PPSSAS) and consider their application to cryptography. The two chal-
lenges before us are: to understand the isogeny graphs of PPSSAS, and to have



efficient algorithms to compute isogenies between principally polarised abelian
surfaces (PPAS) in general.

In this work, we will examine the structure of the (`, `)-isogeny graph of
PPSSAS and show that the genus two hash mentioned above is no longer collision
resistant. This will be presented in §2. The realisation of the genus two version
of SIDH will make up §3 and we will examine its security in §4.

Due to space restrictions, we will assume knowledge of abelian varieties and
some of their properties. Assiduous readers can refer to [16] and [15] for defini-
tions and background.
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2 PPSSAS Graph

Let p and ` be distinct primes. In this section, we will examine the structure
of the graph Gp,`, where the vertices are isomorphism classes of PPSSAS over
Fp, and edges are present between two vertices if they are (`, `)-isogenous. We
will see that the PPSSAS graph has a regular and repeating substructure that
we can identify. This can be seen explicitly in the subgraphs of the full isogeny
graph presented in Appendix A.

2.1 Morphisms to Subgroups

One of the key tools in studying isogenies between abelian varieties is the corre-
spondence between subgroups and isogenies. This subsection explains the prop-
erties a subgroup needs to have in order to correspond to an appropriate isogeny.

The first result allows us to restrict our attention to Jacobians of hyperelliptic
curves of genus two or some reducible product of two elliptic curves.

Theorem 1. If A/Fp is a PPAS, then A ∼= JH for some smooth (hyperelliptic)
genus two curve H, or A ∼= E1 × E2 where Ei are elliptic curves.

Proof. Use [11, Theorem 3.1] which says that A is isomorphic over Fpn (for some
n) to the two cases in the theorem, or to the restriction of scalars of a polarized
elliptic curve over a quadratic extension of Fpn . Since we are working over Fp,
the latter case is absorbed into the second case. ut

Given an abelian variety A, the dual variety A∨ exists and is unique up to
isomorphism. An ample divisor L of A defines an isogeny φL : A → A∨ known



as the polarisation of A. If the polarisation is an isomorphism, then we say that
it is principal.

There is a non-degenerate alternating pairing, known as the Weil pairing, on
an abelian variety A over k

em : A[m](k)×A∨[m](k)→ k
∗
,

where A[m] is the m-torsion subgroup of A.
Being non-degenerate, the Weil pairing is non-trivial on the entire torsion

subgroup. But there are subgroups in the torsion subgroup onto which the Weil
pairing acts trivially when restricted. We give them a special name:

Definition 1. A subgroup S of A[m] is proper if A[n] 6⊆ S for any 1 < n ≤ m.
Let A be an abelian variety over F̄p, and let m be a positive integer co-prime

with p. We say a proper subgroup S of A[m] is maximal m-isotropic if

(1) the m-Weil pairing on A[m] restricts trivially to S, and
(2) S is not properly contained in any other subgroup of A[m] satisfying (1).

We call the first condition the isotropic condition. Note that the definition for
a maximal isotropic subgroup does not include kernels of isogenies that factor
through the multiplication-by-n map.

The following result then illustrates the preservation of principal polarisations
under isogenies whose kernels are isotropic.

Proposition 1. Let H be a hyperelliptic curve of genus two over Fq. Let K be
a finite, proper, Fq-rational subgroup of JH(Fq). There exists a PPAS A over
Fq, and an isogeny φ : JH → A with kernel K, if and only if K is a maximal
m-isotropic subgroup of JH [m] for some positive integer m.

Proof. The quotient JH → JH/K always exists as an isogeny between abelian
varieties [19, III.3.12]. Since JH is the Jacobian of a hyperelliptic curve, it has
a principal polarisation λ. Now consider the polarisation µ = [deg φ] ◦ λ on JH ,
then we certainly have K = kerφ ⊆ kerµ, and since K is isotropic, we use [15,
Theorem 16.8] to get a polarisation λ′ on JH/K. Using [15, Remark 16.9], we
have that deg λ′ = 1 and so JH/K is a PPAS.

Furthermore, by Theorem 1, we have that A is the Jacobian of a hyperelliptic
curve of genus two or a product of two elliptic curves. ut

Using the results above, we can focus on the type of subgroups of the torsion
group that correspond to the isogenies we would like to investigate. We will
denote by Cn the cyclic group of order n.

Lemma 1. Let A be a PPAS. If K is a maximal `n-isotropic subgroup, then it
cannot be cyclic.

Proof. Suppose that K is cyclic, then K is trivial on the pairing from the alter-
nating property. It can then be shown that K is contained in C2

`n , which is also
isotropic and so K cannot be maximal. ut



Proposition 2. Let A be a PPAS. Then the maximal `n-isotropic subgroups of
A[`n] are isomorphic to

C`n × C`n or C`n × C`n−k × C`k

where 1 ≤ k ≤ bn/2c.

Proof. We see, from Lemma 1 and the fact that maximal isotropic subgroups
must be proper, that K must have rank 2 or 3. Suppose that K has rank 2, then
it can be shown that to be maximal, K must have the structure C`n × C`n by
repeated inclusion.

Let C`a × C`b × C`c × C`d be a subgroup of A[`n]. To simplify notation, we
write this as [a, b, c, d]. Without loss of generality, we can take a ≥ b ≥ c ≥ d.
Then we have that the dual is [n−a, n−b, n−c, n−d] (since the composition with
the original isogeny is multiplication-by-`n) and n− a ≤ n− b ≤ n− c ≤ n− d.
Hence to get the symmetry as specified by [16, pg. 143, Thm. 1], we must have
that n− a = d and n− b = c. Since we must have that one of the indices is zero,
we take d = 0 and the result follows. ut

This result narrows down the subgroups that we need to study in order to study
sequences of (`, `)-isogenies between PPAS.

2.2 Number of neighbours in an (`, `)-isogeny graph

In this section, we will consider the structure of an (`, `)-isogeny graph, Gp,`.
We do so by computing the number of neighbours that each vertex is connected
to. Also, we will see that the number of paths between each vertex can vary
according to the structure of the kernel.

We approach this question by choosing an arbitrary PPAS and considering
isogenies emanating from this surface. Then the nascent isogeny graph is a rooted
graph at the chosen surface. The first result counts the number of elements n
steps from the root.

Theorem 2. Let A be a PPAS, ` be a prime different from p and n > 2. Then
the number of `n-maximal isotropic subgroup of A[`n] is

`2n−3(`2 + 1)(`+ 1)

(
`n + `

`n−2 − 1

`− 1
+ 1

)
if n is even, and

`2n−3(`2 + 1)(`+ 1)

(
`n +

`n−1 − 1

`− 1

)
if n is odd.

The proof of the theorem follows by summing the number of maximal isotropic
subgroups which is given in the following proposition.



Proposition 3. Let A be a PPAS. Let N(a, b, c) be the number of maximal
isotropic subgroups of A isomorphic to C`a × C`b × C`c . Then

1. N(n, n− a, a) = `3n−2a−4(`2 + 1)(`+ 1)2, where 1 ≤ a < n/2;
2. N(n, n, 0) = `3n−3(`2 + 1)(`+ 1);
3. N(2k, k, k) = `4k−3(`2 + 1)(`+ 1).

Proof. We will prove this for the second case. Note that this is equivalent to
finding a subgroup isomorphic to C2

`n in A[`n] ∼= C4
`n which satisfies the isotropic

condition.
So we need to find 2 elements in C4

`n that have full order, are isotropic
under the Weil pairing and generate subgroups with trivial intersection. To make
things concrete, let 〈P1, . . . , P4〉 = C4

`n . Let us pick the first element A ∈ C4
`n .

This involves picking a full order element in C4
`n for which we have `4n − `4n−4

choices. Let A =
∑

[ai]Pi.
To pick the second element B ∈ C4

`n , we need to pick a full order element
but also ensure that B is isotropic to A under the Weil pairing. If we write
B =

∑
[bi]Pi, then we require that

e`(A,B) = e`(P1, P2)a1b2−a2b1 · e`(P1, P3)a1b3−a3b1 · e`(P1, P4)a1b4−a4b1

· e`(P2, P3)a2b3−a3b2 · e`(P2, P4)a2b4−a4b2 · e`(P3, P4)a3b4−a4b3

= 1 .

But this is a linear condition on the selection of the bi’s. Thus this gives us
`3n − `3n−3 choices1. But we need to pick B such that B /∈ 〈A〉. Given that B
has full order, we need to avoid (`− 1)`3(n−1) elements. Hence the total number
of choices for B is

`3n − `3(n−1) − (`− 1)`3(n−1) .

Now, we need to divide the choices we have for A and B by the number of
generating pairs in a subgroup C2

`n . The total number of generating pairs is
(`2n−`2(n−1))(`2n−`2(n−1)−(`−1)`2(n−1)). Hence the total number of maximal
isotropic C2

`n subgroups of C4
`n is

(`4n − `4n−4)(`3n − `3(n−1) − (`− 1)`3(n−1))

(`2n − `2(n−1))(`2n − `2(n−1) − (`− 1)`2(n−1))
= `3n−3(`2 + 1)(`+ 1) .

The other two cases are proved similarly. ut
1 To see this, note that each e`(Pi, Pj) = µαi,j , where µ is an `-root of unity and αi,j

is some non-zero integer. We can express the isotropic condition as

b4(α1,4a1 + α2,4a2 + α3,4a3) ≡
α1,2(a2b1 − a1b2) + α1,3(a3b1 − a1b3)
+α2,3(a3b2 − a2b3) + α1,4a4b1
+α2,4a4b2 + α3,4a4b3

(mod `) .

In the case where (α1,4a1 + α2,4a2 + α3,4a3 6≡ 0, we have free choices for b1, b2, b3
(not all divisible by `) and so have `3n − `3n−3 choices.



Now, suppose we have an isogeny which has a maximal isotropic kernel K
with order `2n, then we can decompose this isogeny into a sequence of n (`, `)-
isogenies:

A0
φ1−−−→ A1

φ2−−−→ A2
φ3−−−→ . . .

φn−−−→ A0/K .

As mentioned in the introduction, this decomposition of isogenies is non-unique.
This arises from kernels whose structure allows for more than one subgroup
isomorphic to C` × C`. The key observation is that these subgroups form the
kernels of φ1. In that spirit, the next two lemmata will give properties for the
kernels of the first isogeny.

Lemma 2. Let A be a PPAS. Let K be a maximal isotropic subgroup of A[`n]
which is isomorphic to C`n × C`n−a × C`a for some a ≥ 0. Let 〈P,Q,R〉 = K
such that P,Q,R have orders `n, `n−a, `a respectively.

(1) Let Pi, Qi, Ri ∈ Ai be elements mapped from P = P0, Q = Q0, R = R0. Then
[`n−i−1]Pi ∈ kerφi+1 for all i ≥ 0.

(2) The first (`, `)-isogeny must have kernel

〈[`n−1]P, [`n−a−1]Q+[k][`a−1]R〉 for 0 ≤ k ≤ `−1, or 〈[`n−1]P, [`a−1]R〉 .

Proof. (1) One can show by contradiction that if there is a kernel not containing
Pi, then we will have cyclic kernels, which cannot be a kernel of a (`, `)-
isogeny by Lemma 1.
Next, let P ′ ∈ 〈Pi〉, Q′ ∈ 〈Qi〉, and R′ ∈ 〈Ri〉 such that P ′, Q′, R′ all have
order `. Then kernels cannot be of the form P ′+Q′, P ′+R′, Q′+R′. Indeed,
it can be shown by examining the pairing e`(P

′+Q′, P ′+R′) to see that one
either obtains a cyclic kernel, or that the subgroup above is not isotropic.

(2) We have from the first part that [`n−1]P must be a generator of the group.
The second generator must be chosen from the remaining points of order `.
By the isotropic condition of K, we have that they are all isotropic on the
pairing as well.

ut

Lemma 3. Let G ∼= C`n × C`n−a × C`a and H be abelian groups. Let

〈P 〉 ∼= C`n , 〈Q〉 ∼= C`n−a , 〈R〉 ∼= C`a

be subgroups of G with trivial intersections. If φ : G→ H is a group homomor-
phism, with

kerφ =
〈
[`n−1]P, [`n−a−1]Q+ [k][`a−1]R

〉
for 1 ≤ k ≤ `− 1 and a ≤ n/2, then H ∼= C`n−1 × C`n−a × C`a−1 .

Proof. We have that φ(P ) has order `n−1 andQ has order `n−a, since [`n−a−1]Q /∈
kerφ. Since the order of the kernel is `2, we must have that H ∼= C`n−1×C`n−a×
C`a−1 . ut



We can now study the different isogenies that exist between two vertices
on the graph. In particular, we will be counting the number of different paths
between any two vertices on the graph.

We will examine the base cases first, where there is only one path between
two vertices, or where two vertices are separated by two (`, `)-isogenies.

Proposition 4. Let A be a PPAS, and let K ∼= (C`n×C`n−a×C`a). Let P (n, a)
be the number of paths from A to A/K. Then

1. P (n, 0) = 1 for all n;
2. P (2, 1) = `+ 1.

Proof. 1. Since kernels of (`, `)-isogenies cannot be cyclic, the only possible
subgroup of order `2 of C`n × C`n is C` × C`, and there is only one choice
for this subgroup.

2. Let K = C`2 × C` × C`. Then from Lemma 2 (and using its notation) we
must have that the first isogeny has kernel

〈[`]P,Q+ [k]R〉 for 0 ≤ k ≤ `− 1, or 〈[`]P,R〉 .

There are `+1 choices for the first kernel. Thereafter, there is only one choice
for the second kernel and so we have a total of `+ 1 paths.

ut

Now, we can prove the general case.

Proposition 5. Using the notation above, where P (n, a) is the number of paths
in a (C`n × C`n−a × C`a)-isogeny. Then P (n, a) satisfies the following recursive
equation:

P (n, a) = 2P (n− 1, a− 1) + (`− 1)P (n− 1, a) ,

where 1 ≤ a < n/2, and with the following boundary conditions:

P (n, 0) = 1, P (2, 1) = `+ 1 .

Proof. We will prove this by induction. The base cases of the induction steps
are easy and the boundary conditions follow from Proposition 4. We will show
the induction step.
Let us suppose that the recursive formula holds for P (n−1, a−1) and P (n−1, a).
Now, suppose that our kernel is isomorphic to C`n × C`n−a × C`a . Since each
(`, `)-isogeny has a kernel of the form C` ×C`, we have, from Lemma 2(2), that
the first isogeny must have a kernel of the form

〈[`n−1]P, [`n−a−1]Q+ [k][`a−1]R〉 for 0 ≤ k ≤ `− 1, or 〈[`n−1]P, [`a−1]R〉 .

It is clear that if the kernel is given by

〈[`n−1]P, [`n−a−1]Q〉 or 〈[`n−1]P, [`a−1]R〉 ,



then the residual kernel will be of the form

C`n−1 × C`n−a−1 × C`a or C`n−1 × C`n−a × C`a−1

respectively. Otherwise, if the first kernel has the form

〈[`n−1]P, [`n−a−1]Q+ [k][`a−1]R〉 for 1 ≤ k ≤ `− 1,

the residual kernel will be of the form C`n−1×C`n−a×C`a−1 by Lemma 3. Hence
we are done. ut

Proposition 4 actually shows us the different paths that can exist between
vertices in the graph. In particular, for kernels with rank 2, there can only be a
single path between the domain and codomain. However, for kernels with rank 3,
there can be a multitude of paths that exist between the domain and codomain.
It can be seen that the following shapes (diamonds) are the basic paths drawn
out by kernels with group structure C`2 × C` × C` for different `’s.

` = 2 ` = 3 ` = 5 ` = 7

The non-uniqueness of these paths can be seen more explicitly in the example
in Appendix A, where the kernel has order 256. Also in Appendix A, we will see
how the diamonds fit together in the isogeny graph.

2.3 Cryptanalysis of the Isogeny-based Hash Functions

The CGL hash function performs a random walk on the supersingular elliptic
curve 2-isogeny graph. From each supersingular elliptic curve, there are three
2-isogenies emanating from that curve. The algorithm receives a binary string as
input and returns an Fp2 value as output. It does so by taking a fixed base curve,
discards one of the three isogenies (how this is done will not be of consequence
in this discussion), and uses the first bit of the input as a choice between the
remaining two isogenies. In the subsequent step, the algorithm uses the second
bit to choose between the only two isogenies that does not lead back to the base
curve (this is termed “no back-tracking”). Note that in this discussion, we have
not mentioned how one can deterministically choose one isogeny over the other
given a fixed bit, but there is a variety of ways one can “order” the isogenies.
Readers are encouraged to refer to the original paper for more details.

In the genus two case of the hash function, due to the additional isogenies
available to a single vertex (15 as opposed to 3), it is hoped that one can achieve



a higher security level with a smaller number of steps. In [21] Takashima outlined
an algorithm for obtaining a sequence of (2, 2)-isogenies without backtracking. He
also implicitly suggested the generalisation of the above hash function to genus
two. The genus two version of the CGL hash uses the input bits to traverse the
(2, 2)-isogeny graph of PPSSAS. The algorithm begins at a pre-chosen PPSSAS
and begins a walk based on the binary input to the algorithm. The walk on
the graph is similar to the original CGL hash with a difference of an increased
number of paths at each iteration.

Genus Two Hash Collisions One of the main results of [4] is the proof that
the CGL hash function is collision resistant. The vague intuition for this is that
the supersingular elliptic curve isogeny graph is locally tree-like, i.e. there are
no small cycles in a small enough subgraph. This assumption fails in the genus
two case as pictured above, any diamond configuration leads to a collision in
the hash. An attacker can find two pairs of bits so that the walks collide. Using
the diamond of ` = 2 as an example, where a hash is performed by walking
along the left-most path. An attacker, with the knowledge that the hash has
traversed through a diamond, will be able to choose either the middle path or
the right-most path to achieve a collision.

In terms of endomorphisms, the collision resistance in the CGL hash is
achieved by the lack of endomorphisms of degree 2k, where k is small, in the
graph. However, as we have seen in the previous section, we might be able to
find endomorphism of degree 16 (or cycles of length 4) after 2 iterations of the
genus two hash.

3 Genus Two SIDH Cryptosystem

In this section, we will construct the key exchange protocol for genus two. The
scheme presented here follows the original scheme closely. Before presenting the
scheme, we will review two algorithms used to select a base PPSSAS and select
a key from the keyspace. We will also look briefly at the isogeny algorithms
employed in the scheme.

We note that the MAGMA implementation of the scheme is extremely slow. An
example is presented in Appendix B.

3.1 Selecting a Base Hyperelliptic Curve

Similar to the SIDH case, we pick primes of the form p = 2n · 3m · f − 1.
We consider a base hyperelliptic curve given by

H : y2 = x6 + 1 .

It can be shown that the Jacobian of H is supersingular since it is the double
cover of the supersingular elliptic curve y2 = x3 + 1, which is supersingular over
Fp, since p ≡ 2 (mod 3). We then take a random sequence of Richelot isogenies
to obtain a random PPSSAS.



3.2 Selection of Secrets

Our aim is to use scalars to encode the secret kernel to be used by the two parties
of the key exchange as this allows for a compact representation of the secret.

Firstly, let H/Fq be a hyperelliptic curve of genus two and let JH be its
Jacobian. The secret kernels will be maximal isotropic subgroups of JH [`n] of
order `2n. As seen in §2, the kernels will have structure C`n × C`n−k × C`k ,
where 0 ≤ k < n/2. Hence they should be generated by three points: Q1, Q2

and Q3. Furthermore, to fulfil the condition of isotropy, we also require that the
generators satisfy

e`n(Q1, Q2) = e`n(Q1, Q3) = e`n(Q2, Q3) = 1 .

Our approach is summarised by the following steps:

Pre-computation:

Step 1: Find generators for JH [`n]. Name them P1, P2, P3, P4.
Step 2: Find the values αi,j such that e`n(Pi, Pj) = e`n(P1, P2)αi,j .

Secret selection:

Step 3: Pick some r1, r2, r3, r4 ∈ [1, . . . , `n − 1]4 such that they are not
simultaneously divisible by `.
Step 4: Pick a random2 0 ≤ k < n/2 and compute s1, s2, s3, s4 and
t1, t2, t3, t4 by solving the two linear congruences r1s2 − r2s1 + α1,3(r1s3 − r3s1)

+α1,4(r1s4 − r4s1) + α2,3(r2s3 − r3s2)
+α2,4(r2s4 − r4s2) + α3,4(r3s4 − r4s3)

 ≡ 0 mod `k

 r1t2 − r2t1 + α1,3(r1t3 − r3t1)
+α1,4(r1t4 − r4t1) + α2,3(r2t3 − r3t2)
+α2,4(r2t4 − r4t2) + α3,4(r3t4 − r4t3)

 ≡ 0 mod `n−k

Step 5: Output (s1, . . . , s4, r1, . . . , r4, t1, . . . , t4) as the secret scalars which
will give the generators of the kernel:

Q1 =
∑

[si]Pi, Q2 =
∑

[ri]Pi, Q3 =
∑

[ti]Pi .

Remark 1. Note the following:

(i) Step 1 can be performed using standard group theoretic algorithms.
(ii) Step 2 performs discrete logarithm computations modulo a 2 and 3-smooth

modulus and so is extremely efficient by using the Silver–Pohlig–Hellman
algorithm [8, §13.2].

(iii) In Step 4, we pick a random solution in the solution space for ri and ti. It
can be shown that this ensures that the isotropic condition is upheld.

2 This will not be a uniformly random choice if one wants to sample the entire
keyspace.



3.3 Isogeny Algorithms

Computing an `-isogeny between elliptic curves can be done with a complexity
of O(`). The general method to compute the codomains of this isogeny or to
map points under the isogeny is to use Vélu’s formula [25]. However, the efficient
computation of arbitrary isogenies between abelian varieties of dimension greater
than 1 is lacking. Here, we will present algorithms for computing the codomains
of (2, 2) and (3, 3)-isogenies and show how we can map subgroups under these
isogenies. The speed-ups come from the use of simpler representations in the
computation: the use of hyperelliptic curves in the (2,2) case and the use of
Kummer surfaces in the (3,3).

Richelot Isogenies We will use Richelot isogenies to perform our (2, 2)-isogenies
as is standard in the literature. Richelot isogenies are relatively well-understood
and have been implemented in various computational algebra programs. Useful
references for Richelot isogenies are [20,3,1].

Note that Richelot isogenies operate on the level of hyperelliptic curves in the
sense that they are morphisms between hyperelliptic curves. The support of the
elements in the kernel of a (2,2)-isogeny defines a factorisation of the defining
hyperelliptic curve polynomial into quadratic polynomials. One can find the
hyperelliptic curve in the codomain via the Richelot correspondence. We can
map points between hyperelliptic curves via this Richelot correspondence. We
use this to extend the map on curves to a map on Jacobians by mapping the
support of elements of the Jacobian.

(3,3)-isogenies over the Kummer Surface As for (3,3)-isogenies, we note
that for the purposes of genus two isogeny cryptography, we do not need to map
points under the isogeny but only need to map Kummer points under the isogeny
since the Jacobian points that correspond to the Kummer points both generate
identical subgroups.

Given an abelian variety A, the Kummer variety is defined by A/〈±1〉. This
is a quartic surface in P3 and computations of isogenies on the Kummer surface
was the object of study of [2]. We can use the formulae3 presented in [2] to
compute the images of Kummer points under the isogeny. This has also been
noted by Costello in [5].

We remark that the procedure detailed in [2, §3] is incomplete. Using the
notation in [2], a last transformation is necessary as c has shifted away from 1
due to prior transformations. At that stage, we have the following:

(s, t, c0, c1, c2,m0,m1,m2, u) = (s′, t′, 1,−1, 0,−r′, 0, 1, 1) .

We need one last transformation

y 7→ (4/λ1)2y

3 The files containing the formulae can be found in http://www.cecm.sfu.ca/

~nbruin/c3xc3/.

http://www.cecm.sfu.ca/~nbruin/c3xc3/
http://www.cecm.sfu.ca/~nbruin/c3xc3/


and set

s = λ1/4, r = Coefficient of x in H1, t = Coefficient of 1 in H1

to get the (r, s, t)-parameterisation of [2, Theorem 6].
The key to forming the cubic formula which maps Kummer points to Kum-

mer points under the (3, 3)-isogeny lies in the biquadratic forms on the Kummer
surface from [3, pg. 23]. Given the generators of the maximal isotropic subgroup
of JH [3], the authors found two cubic forms which are each invariant under trans-
lation by T1 and T2 respectively. The cubic forms generated spaces of dimension
8 and intersect in dimension 4, which gives an explicit description of the quartic
model of the Kummer surface.

3.4 Genus Two SIDH

We will present the key exchange protocol in genus two for completeness. The
astute reader will see that all the steps carry over from the original scheme
presented in §3.2 of [14].

Set-up Pick a prime p of the form p = 2eA3eBf − 1 where 2eA ≈ 3eB . Now,
we pick a hyperelliptic curve H using the methods of §3.1 which will be defined
over Fp2 . We then generate the bases {P1, P2, P3, P4} and {Q1, Q2, Q3, Q4} which
generate JH [2eA ] and JH [3eB ] respectively.

First Round Alice chooses her secret scalars (ai)i=1,...,12 using the steps out-
lined in §3.2 and computes the isogeny φA : JH → JA with kernel given by〈

4∑
i=1

[ai]Pi,

8∑
i=5

[ai]Pi,

12∑
i=9

[ai]Pi

〉
.

She also needs to compute the points φA(Qi) for i = 1, 2, 3, 4. She sends the
tuple

(G2(JA), φA(Q1), φA(Q2), φA(Q3), φA(Q4))

to Bob, where G2(JA) is the G2-invariants of the hyperelliptic curve associated
to JA.

At the same time, Bob chooses his secret scalars (bi)i=1,...,12 using the steps
outlined in §3.2 and computes the isogeny φB : JH → JB which has the kernel〈

4∑
i=1

[bi]Pi,

8∑
i=5

[bi]Pi,

12∑
i=9

[bi]Pi

〉
.

He computes the points φB(Pi) for i = 1, 2, 3, 4, and sends the tuple

(G2(JB), φB(P1), φB(P2), φB(P3), φB(P4))

to Alice.



Second Round Alice will receive Bob’s tuple and proceeds with computing JB
from the G2-invariant, and the points〈

4∑
i=1

[ai]φB(Pi),

8∑
i=5

[ai]φB(Pi),

12∑
i=9

[ai]φB(Pi)

〉
.

This is the kernel of a (2eA , 2eA−k, 2k)-isogeny φ′A : JB → JBA. Bob will perform
a similar computation and arrive at the PPSSAS JAB . But since

JAB = JA/φA(KB) ∼= JH/〈KA,KB〉 ∼= JB/φB(KA) = JBA ,

they can then use the G2-invariants of JAB and JBA as their shared secret.

Remark 2. The method in [2] allows us to find ±φB(Pi). However, we need the
map

(P1, P2, P3, P4) 7→ (φB(P1), φB(P2), φB(P3), φB(P4))

or
(P1, P2, P3, P4) 7→ (−φB(P1),−φB(P2),−φB(P3),−φB(P4))

to ensure that the subgroup generated by Alice in the second round is isotropic.
To fix this problem, one could check if

e2eA (φB(Pi), φB(Pj)) = e2eA (Pi, Pj)
3eB

for all 1 ≤ i < j ≤ 4 and negate the φB(Pi)’s accordingly.

4 Security and Analysis

4.1 Security Estimates

In this section, we will define the computational problem needed to analyse our
cryptosystem.

Let p be a prime of the form 2n · 3n · f − 1, and fix a hyperelliptic curve of
genus two H over Fp2 and let JH denote its Jacobian. Fix bases for JH [2n] and
JH [3m], denoting them by {Pi}i=1,2,3,4 and {Qi}i=1,2,3,4 respectively.

Problem 1 (Computational Genus Two Isogeny (CG2I) Problem). Let φ : JH →
JA be an isogeny whose kernel is given by K. Given JA and the images {φ(Qi)},
i ∈ {1, 2, 3, 4}, find generators for K.

This problem is conjectured to be computationally infeasible for the same
reasons as listed in [14]. However, due to the higher regularity of the genus two
isogeny graph, we are able to perform a smaller number of isogeny computations
to achieve the same security level as compared to SIDH.

Let us look at the complexities of the algorithms one can employ against the
CG2I problem, where the task is to recover the isogeny φA : JH → JA when
given JH and JA. We note that from Proposition 3, we have that the number of



elements in the n-sphere is `3n−3(`2 + 1)(`+ 1) ≈
√
p3, hence a naive exhaustive

search on the leaves of JH has a complexity of O(
√
p3). One can improve on this

by considering the meet-in-the-middle search by listing all isogenies of degree
`n from JH and JA and finding collisions in both lists. The meet-in-the-middle
search has a complexity of O( 4

√
p3). One can perform better by employing a

quantum computer to reduce the complexity to O( 6
√
p3) using Claw finding

algorithms [23]. This compares favourably with the genus one case which has
classical security of O( 4

√
p), and quantum security of O( 6

√
p). An example of a

prime which one can use to achieve 128-bits of security is 171-bits, whereas the
genus one case requires 512-bits for the same level of security.

4.2 Existing Attacks on SIDH

We will dedicate this section to examining the impact of the attacks proposed
in the cryptanalysis papers [9,24,10,17,7]. We will group the attacks into two
classes: Curves and points, and computing endomorphism rings.

Attacks on curves and points include the adaptive attack [9] and fault attacks
[24,10]. Attacks via the computation of endomorphism rings include the methods
using auxiliary points to find a subring of the endomorphism ring [17] and using
the Deuring correspondence [7]. The purpose of computing the endomorphism
ring is due to the result in [9] that showed a reduction, in most cases, that the
SIDH problem is at most as difficult as computing the endomorphism ring. The
key observation behind this result is that the isogenies tend to be short paths in
the graph, and so a lattice reduction performed on the basis of the connecting
ideal would yield an element that corresponds to the secret isogeny via results
in [13].

Adaptive Attack Due to the similar construction of the two protocols, the
adaptive attack still carries over to the genus two version. Suppose the attacker
is playing the role of Bob and sends Alice the points

φB(P1), φB(P2), φB(P3), φB([2n−1]P4 + P4)) .

Following the procedure detailed in [9], Bob will be able to recover the first bit
of a4. To recover the rest of the secret, one only needs to tweak the algorithm
presented in the original paper.

Fault Attack The loop-abort fault attack presented in [10] would still apply,
as our protocol still requires repeated computations of isogenies of low degrees,
resulting in the existence of intermediate curves which is key to the attack.

The fault injection on a point as presented in [24] relies on the recovery of the
image of one random point under the secret isogeny. Intuitively, the n-torsion
points of an abelian variety of genus g is a Z/nZ-module of rank 2g. Hence the
recovery of the image of one random point as in the g = 1 case in [24] is akin to



recovering a one-dimensional subspace and the task of finding the secret isogeny
is the recovery of the complementary subspace.

This approach can still work in our setting, however we will require a mini-
mum of 2 images of random points under the isogeny. This is because the com-
plementary subspace in our case is of dimension 2, and so we will need at least
two points to span that space.

Endomorphism Ring Computations Let E be a supersingular elliptic curve
over k and let char k = p > 0. Then we know that EndE⊗Q = Bp,∞, where Bp,∞
is the quaternion algebra over Q ramified at p and∞. Also, EndE is a maximal
order of Bp,∞. In the case of higher genus, if A is a PPSSAV of dimension g,
then we have that the endomorphism algebra is EndA ⊗ Q = Mg(Bp,∞) [16,
pg. 174, Cor. 2].

We will leave the thorough examination of the effects of endomorphism ring
computations on the cryptosystem as an open problem.

5 Conclusion

We studied the (`, `)-isogeny graphs and cryptanalysed a genus two variant of
the CGL hash function. We studied the implementation of the genus two SIDH
cryptosystem by looking at the mapping of Kummer points under a (3, 3)-isogeny
and Jacobian points under a (2, 2)-isogeny. We have shown that the genus two
isogeny cryptosystem can be implemented, but the fact of the matter is: improve-
ments in the algorithms need to be found before a practical implementation can
be achieved.
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A Examples of Isogeny Graphs

We will consider kernels with order 256 in this example. The key to each example
is to the find the number of C2 × C2 subgroups of each kernel since this would
correspond with the number of possible (2, 2)-isogenies. Firstly, we note that the
structure of maximal isotropic subgroups of order 256 must be C16 × C16, or
C16×C4×C4, or C16×C8×C2 by Proposition 2. The isogeny graphs are given
in Figure 1.

The easy case is when the kernel K0 has the structure C16 × C16. This is
because there is only one C2 × C2 subgroup in K. Hence, there is only one
isogeny path available and we have a straight line.

http://eprint.iacr.org/


Now, let us consider the case when K1 has the structure C16 ×C4 ×C4. We
will label the isomorphism classes of the surfaces by (n), where n is a natural
number. We will denote the first surface by (1).

We can represent the 3 generators of K1 by P , Q and R, where their orders
are 16, 4 and 4 respectively. There are 3 different C2×C2 subgroups of K given
by 〈[8]P, [2]Q〉, 〈[8]P, [2]R〉 and 〈[8]P, [2](Q + R)〉 in accordance to Lemma 2.
Hence, we can and will denote the (2, 2)-subgroups of K by the scalar preceding
Q and R. For instance, the three subgroups given here are denoted by (2, 0),
(0, 2) and (2, 2).

These 3 subgroups lead to non-isomorphic surfaces labelled as (2), (3) and
(4). The edges are labelled by the subgroup corresponding to the isogeny.

Consider the vertex (2), and consider the (2, 2)-isogeny from (2) with kernel
〈[4]P, [2]R〉4 and denote the codomain by (8). One can see that the isogeny from
(1) to (8) has kernel 〈[4]P, [2]Q, [2]R〉.

One can also map from (3) and (4) to (8) via the kernels (2,0) and (2,0). Im-
mediately, one can spot the diamonds mentioned prior to this example. Indeed,
the diamonds can be seen repeatedly in the graph.

Vertices can form tips of the diamond when there is a C4×C2×C2 subgroup
in the kernel. This is best illustrated in the next example where the kernel K2

has structure C16×C8×C2. Using the notation from the previous example, K2

will be given by 〈P ′, Q′, R′〉, where P ′ = P , [2]Q′ = Q and R′ = [2]R
Starting from the vertex (1) again, we have the same 3 subgroups, which

result in the same surfaces (2), (3) and (4). We also have that the three surfaces
will all have maps into (8) as before. However, residual kernel at (2) is now
isomorphic to C8×C8, hence we see that the isogeny path from (2) down to (18)
is a straight line. The residual kernel at (4) on the other hand, is C8 ×C4 ×C2,
hence it contains C4×C2×C2 as a subgroup and so, (4) forms the tip of another
diamond.

Another thing to note about this case is that the moment R is in the kernel,
we cannot have C4 × C2 × C2 as a subgroup of the residual kernel. This can be
observed from the diagonal right-to-left lines in Figure 1b.

Lastly, Figure 2 shows all the neighbours which are two (2, 2)-isogenies away.
So the top vertex is connected to each of the middle and bottom vertices by an
isogeny of degree 4 and 16 respectively. The diamonds corresponding to kernels
with the structure C4×C2×C2, (though contorted) are present and its number
is as predicted in Proposition 3.

B Implementation

We have implemented the key exchange scheme in MAGMA using p of 100-bits.
This yields a classical security of 75-bits and a quantum security of 50-bits.
The first round of the key exchange which required the mapping of points took

4 Note that we actually mean 〈[4]φ(P ), [2]φ(R)〉, where φ corresponds to the (2, 2)-
isogeny from (1). We will drop φ for ease of notation.
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Fig. 1: Isogeny subgraphs when the kernel has order 256.
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Fig. 2: Isogeny graph from an arbitrary vertex showing 2 layers of isogenies.

145.7 seconds for Alice and 145.41 seconds for Bob. The second round of the key
exchange took 74.8 seconds for Alice and 72.29 seconds for Bob.

The implementation took parameters eA = 51 and eB = 32, and f = 1 with

p = 4172630516011578626876079341567 .

The base hyperelliptic curve is defined by

H : y
2
= (380194068372159317574541564775i+ 1017916559181277226571754002873)x

6

+ (3642151710276608808804111504956i+ 1449092825028873295033553368501)x
5

+ (490668231383624479442418028296i+ 397897572063105264581753147433)x
4

+ (577409514474712448616343527931i+ 1029071839968410755001691761655)x
3

+ (4021089525876840081239624986822i+ 3862824071831242831691614151192)x
2

+ (2930679994619687403787686425153i+ 1855492455663897070774056208936)x

+ 2982740028354478560624947212657i+ 2106211304320458155169465303811

where i2 = −1 in Fp2 .



The generators of the torsion subgroups are given by

P1 =


x2 + (2643268744935796625293669726227i+ 1373559437243573104036867095531)x

+2040766263472741296629084172357i+ 4148336987880572074205999666055,
+(2643644763015937217035303914167i+ 3102052689781182995044090081179)x

+1813936678851222746202596525186i+ 3292045648641130919333133017218

 ,

P2 =


x2 + (1506120079909263217492664325998i+ 1228415755183185090469788608852)x

+510940816723538210024413022814i+ 325927805213930943126621646192,
+(1580781382037244392536803165134i+ 3887834922720954573750149446163)x

+167573350393555136960752415082i+ 1225135781040742113572860497457

 ,

P3 =


x2 + (3505781767879186878832918134439i+ 1904272753181081852523334980136)x

+646979589883461323280906338962i+ 403466470460947461098796570690,
+(311311346636220579350524387279i+ 1018806370582980709002197493273)x
+1408004869895332587263994799989i+ 1849826149725693312283086888829

 ,

P4 =


x2 + (2634314786447819510080659494014i+ 72540633574927805301023935272)x

+1531966532163723578428827143067i+ 1430299038689444680071540958109,
+(3957136023963064340486029724124i+ 304348230408614456709697813720)x

+888364867276729326209394828038i+ 2453132774156594607548927379151

 ,

Q1 =


x2 + (2630852063481114424941031847450i+ 66199700402594224448399474867)x

+497300488675151931970215687005i+ 759563233616865509503094963984,
+(1711990417626011964235368995795i+ 3370542528225682591775373090846)x

+2409246960430353503520175176754i+ 1486115372404013153540282992605

 ,

Q2 =


x2 + (950432829617443696475772551884i+ 3809766229231883691707469450961)x

+1293886731023444677607106763783i+ 2152044083269016653158588262237,
+(3613765124982997852345558006302i+ 4166067285631998217873560846741)x

+2494877549970866914093980400340i+ 3422166823321314392366398023265

 ,

Q3 =


x2 + (1867909473743807424879633729641i+ 3561017973465655201531445986517)x

+614550355856817299796257158420i+ 3713818865406510298963726073088,
+(846565504796531694760652292661i+ 2430149476747360285585725491789)x

+3827102507618362281753526735086i+ 878843682607965961832497258982

 ,

Q4 =


x2 + (2493766102609911097717660796748i+ 2474559150997146544698868735081)x

+843886014491849541025676396448i+ 2700674753803982658674811115656,
+(2457109003116302300180304001113i+ 3000754825048207655171641361142)x

+2560520198225087401183248832955i+ 2490028703281853247425401658313

 .

The secret scalars of Alice and Bob are

α1 = 937242395764589 , α2 = 282151393547351 , α3 = 0, α4 = 0,

α5 = 0, α6 = 0, α7 = 1666968036125619 , α8 = 324369560360356 ,

α9 = 0, α10 = 0, α11 = 0 , α12 = 0 ,

β1 = 103258914945647 , β2 = 1444900449480064 , β3 = 0, β4 = 0,

β5 = 0, β6 = 0, β7 = 28000236972265 , β8 = 720020678656772 ,

β9 = 0, β10 = 0, β11 = 0 , β12 = 0 ,

Using their secret scalars, they will obtain the following pair of hyperelliptic
curves

HA : y
2
= (3404703004587495821596176965058i+ 403336181260435480105799382459)x

6

+ (3001584086424762938062276222340i+ 3110471904806922603655329247510)x
5

+ (1017199310627230983511586463332i+ 1599189698631433372650857544071)x
4

+ (2469562012339092945398365678689i+ 1154566472615236827416467624584)x
3

+ (841874238658053023013857416200i+ 422410815643904319729131959469)x
2

+ (3507584227180426976109772052962i+ 2331298266595569462657798736063)x

+ 2729816620520905175590758187019i+ 3748704006645129000498563514734 ,



HB : y
2
= (3434394689074752663579510896530i+ 3258819610341997123576600332954)x

6

+ (3350255113820895191389143565973i+ 2681892489448659428930467220147)x
5

+ (2958298818675004062047066758264i+ 904769362079321055425076728309)x
4

+ (2701255487608026975177181091075i+ 787033120015012146142186182556)x
3

+ (3523675811671092022491764466022i+ 2804841353558342542840805561369)x
2

+ (3238151513550798796238052565124i+ 3437885792433773163395130700555)x

+ 1829327374163410097298853068766i+ 3453489516944406316396271485172 .

The auxiliary points computed are the following

φB(P1) = ±


x2 + (576967470035224384447071691859i+ 3905591233169141993601703381059)x

+1497608451125872175852448359137i+ 2622938093324787679229413320405,
(2205483026731282488507766835920i+ 1887631895533666975170960498604)x
+2270438136719486828147096768168i+ 1098893079140511975119740789184

 ,

φB(P2) = ±


x2 + (200280720842476245802835273443i+ 3878472110821865480924821702529)x

+476628031810757734488740719290i+ 2957584612454518004162519574871,
(3949908621907714361071815553277i+ 630639323620735966636718321043)x
+901597642385324157925700976889i+ 2429302320101537821240219151082

 ,

φB(P3) = ±


x2 + (4133157753622694250606077231439i+ 2486410359530824865039464484854)x

+217800646374565182483064906626i+ 1249364962732904444334902689884,
(1265490246594537172661646499003i+ 2130834160349159007051974433128)x

+2580286680987425601000738010969i+ 578046610192146114698466530758

 ,

φB(P4) = ±


x2 + (6601102003779684073844190837i+ 87106350729631184785549140074)x
+2330339334251130536871893039627i+ 1494511552650494479113393669713,
(1706314262702892774109446145989i+ 3539074449728790590891503255545)x

+1950619453681381932329106130008i+ 685170915670741858430774920061

 ,

φA(Q1) =


x2 + (3464040394311932964693107348618i+ 1234121484161567611101667399525)x

+17895775393232773855271038385i+ 3856858968014591645005318326985,
(2432835950855765586938146638349i+ 3267484715622822051923177214055)x

+985386137551789348760277138076i+ 1179835886991851012234054275735

 ,

φA(Q2) =


x2 + (363382700960978261088696293501i+ 3499548729039922528103431054749)x

+3832512523382547716418075195517i+ 3364204966204284852762530333038,
(3043817101596607612186808885116i+ 4027557567198565187096133171734)x
+4087176631917166066356886198518i+ 1327157646340760346840638146328

 ,

φA(Q3) =


x2 + (3946684136660787881888285451015i+ 1250236853749119184502604023717)x

+3358152613483376587872867674703i+ 467252201151076389055524809476,
(1562920784368105245499132757775i+ 987920823075946850233644600497)x
+1675005758282871337010798605079i+ 1490924669195823363601763347629

 ,

φA(Q4) =


x2 + (1629408242557750155729330759772i+ 3235283387810139201773539373655)x

+1341380669490368343450704316676i+ 1454971022788254094961980229605,
(2393675986247524032663566872348i+ 3412019204974086421616096641702)x

+1890349696856504234320283318545i+ 841699061347215234631210012075

 .

This allows for both parties to compute the final isogeny to obtain

1055018150197573853947249198625i+ 2223713843055934677989300194259,
819060580729572013508006537232i+ 3874192400826551831686249391528,
1658885975351604494486138482883i+ 3931354413698538292465352257393


as their common G2-invariants.
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