
ar
X

iv
:1

90
8.

07
49

4v
2 

 [
ee

ss
.S

P]
  1

3 
Ja

n 
20

20

Tenant-Aware Slice Admission Control using

Neural Networks-Based Policy Agent⋆

Pedro Batista1,2, Shah Nawaz Khan1, Peter Öhlén1, and Aldebaro Klautau2

1 Ericsson Research, Sweden
{pedro.batista,shah.khan,peter.ohlen}@ericsson.com

2 Federal University of ParÃą, Brazil
aldebaro@ufpa.br

Abstract. 5G networks will provide the platform for deploying large
number of tenant-associated management, control and end-user applica-
tions having different resource requirements at the infrastructure level.
In this context, the 5G infrastructure provider must optimize the in-
frastructure resource utilization and increase its revenue by intelligently
admitting network slices that bring the most revenue to the system. In
addition, it must ensure that resources can be scaled dynamically for
the deployed slices when there is a demand for them from the deployed
slices. In this paper, we present a neural networks-driven policy agent
for network slice admission that learns the characteristics of the slices
deployed by the network tenants from their resource requirements profile
and balances the costs and benefits of slice admission against resource
management and orchestration costs. The policy agent learns to admit
the most profitable slices in the network while ensuring their resource
demands can be scaled elastically. We present the system model, the
policy agent architecture and results from simulation study showing an
increased revenue for infra-structure provider compared to other relevant
slice admission strategies.

Keywords: Network slicing · reinforcement learning · resource manage-
ment.

1 Introduction

Communication networks have been continuously evolving towards an ever-
increasing complexity, both in integrating new technologies and supporting new
verticals. The former requires a cross-domain and cross-technology network de-
ployment and optimization while the latter imposes heterogeneous requirements
on the network operators and the infrastructure that must support them [5]. 5G
networks, the most recent evolution of mobile communication networks, is antici-
pated to be platform for not only integrating new and revolutionary technologies

⋆ This work has received funding from the H2020-MSCA-ITN-2016 SPOTLIGHT
project under grant number 722788.
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such as Software Defined Networking (SDN) and Network Function Virtualiza-
tion (NFV) but also support the requirements of new verticals through network
slicing and multi-tenancy [8]. However, with such a wide gamut of technologies
being integrated and support for different verticals developed, 5G networks have
become extremely complex for management and control using the traditional
network practices. One consequence of the 5G complexity is the large number of
configurable parameters that exists in the network’s cloud, radio access, control
and management domains. Doing the large number of possible configurations
manually is bound to trigger both suboptimal configuration setups which may
lead not only to service disruption and failures but also adversely affect the rev-
enue generation capacity of the network infrastructure. It is well recognized in
this context that to handle this complexity, network automation requiring mini-
mal human intervention will be required [5]. In existing networks, automation is
generally an add-on feature that is mostly driven by pre-defined set of rules in
specific context of a use case such as load balancing, mobility management, in-
terference management etc. In 5G networks however, network automation driven
by machine learning and artificial intelligence is anticipated to be a core feature
that will drive most of the network management and control functions in an
autonomous manner.

An important feature of 5G networks to support multi-tenancy is the network
slicing concept which enables the network operator or Infrastructure Provider
(InP) to facilitate different service providers in the network by providing dedi-
cated resources [13]. The service providers in turn, offer revenue for the resources
allocated to their deployed services in their dedicated slice. The network slicing
concept has been considered at different scales, abstraction levels and in different
network segments in the context of multi-tenant 5G networks [3,6,13,15]. How-
ever, regardless of how network slices are defined, they are eventually mapped
onto a shared network infrastructure and must be managed by InP to optimize
both resource utilization and revenue generated from the deployed slices.

In this work, we focus on the network slicing concept and present a reinforce-
ment learning-based policy agent that aims to optimize the revenue generated
from deploying different service slices in the network while ensuring that the de-
ployed services can elastically scale their resource consumption footprint when
needed. The rest of the paper is organized as follows. Section 2 provides the re-
lated work on network slicing and platforms supporting network slice deployment
in the scope of virtualized 5G networks. Section 3 presents our proposed pol-
icy agent together with the system model and close-loop management architec-
ture. In Section 4, simulation scenarios and results are presented to substantiate
the increased revenue claim when compared to other relevant slice deployment
strategies. The paper is concluded in Section 5 with a summary and discussion
of future work in this scope.
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2 Related Work

Virtualization is at the core of 5G network architecture where cloud platform
spans across the different network segments diverging from the traditional cen-
tralized cloud architecture. A cloud-based network infrastructure inherently sup-
ports multi-tenancy and resource sharing. In such a context, there is a need for
intelligent resource management to deploy network slices on the shared infras-
tructure. In this section, we describe some network slice management approaches
that have been considered in the literature.

Samdanis et al. [13] proposes a 5G slice network management architecture.
It is focused on having many players interacting over the network and the inter-
faces for communication among them. The architecture assumes a shared radio
access network, that is divided in multiple domains, each one controlled by a
domain manager, which are themselves managed by a higher-level network man-
ager called 5G network slice broker with which the tenants communicate. To
operate the network, the authors explicitly cite a set of metrics that are im-
portant for slice management. These metrics include the amount of resources
allocated to a network slice such as physical resources or data rate, timing such
as starting time, duration or periodicity of a request and time window, the type
of resources and Quality of Service (QoS) parameters such as radio/core bearer
type, prioritization, delay jitter, loss, etc. These metrics are important for un-
derstanding what the general service requirements at a high level are, such as
service mobility, data offloading and disruption tolerance so it can be estimated
if the current load in the system can fit the new slice.

Sciancalepore et al. [14] developed an admission control module for slice
admission into a mobile network. Their model assumes that the bottleneck of
the network is the physical resource (spectrum) which is to be shared among
the network tenants. The information provided by the tenant to InP at the
slice request include maximum resource utilization, duration of the slice and
traffic class. In this context, traffic class specifies some behavior of the traffic,
i.e., delay tolerance and if the bit rate should be guaranteed or not. The work
considers a total of 6 traffic classes. Once deployed into the system, tenants
request resources according to a Poisson process and the InP must provide them,
otherwise a Service Level Agreement (SLA) violation penalty is incurred. The
solution proposed to solve this problem applies a prediction of the traffic load of
the requested slice. Based on this and the predictions of the previously admitted
slices, the admission module can evaluate if the new slice can be placed into the
system. The combination of all the possible slices in the system is modeled as a
geometric knapsack problem. When the slice leaves the system, the prediction
module (as part of the admission) is informed of the actual behavior of the slice
so it can evaluate how accurate its prediction was and update its knowledge with
new experience.

Another system for slice admission is studied by Bega et al. [2]. Their model of
mobile network has physical resource (spectrum) as bottleneck and they have two
types of traffic classes: elastic and inelastic. Inelastic users are characterized by
having an SLA which specifies that all the requested resources must be provided
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when needed. Elastic users, on the other hand, do not require a specific number
of resources and can cope with a variation of the number of allocated resources
and their SLA is specified by an average resource availability. A slice request
is composed of the slice duration, the traffic type and the slice size (in number
of clients). The admission problem is modeled as a Markov Decision Process
(MDP). The states are the number of elastic and inelastic users. The actions
are: accept or reject the slices, while the objective is to admit as many slices as
possible while guaranteeing the tenants requested SLA. Bega et al. [2] proposes
the use of Q-Learning to solve the problem. They compare their solution with two
heuristics and an analytical algorithm. They show that their proposed solution
can adapt if the system does not behave as modeled and provide better decisions
than the other proposals.

Apart from the research works targeting new approaches to network slicing
and resource management, there is significant work being done on developing
platforms which can be used to integrate such solutions in real networks. The
seminal work on the platform side was started with the European Telecommuni-
cations Standards Institute (ETSI) NFV group that released a whitepaper out-
lining how network infrastructure made of physical nodes would be transformed
to a software system running on general purpose servers [1]. Subsequently, the
group presented the NFV Management and Orchestration Framework (MANO)
that has been the reference architecture for many platforms currently being de-
veloped for virtualized network management [4]. The reference implementation
of the ETSI MANO architecture is called Open Source MANO (OSM) and is ac-
tively maintained by the open source community. Similar initiatives were started
by vendors and commercial entities to produce carrier grade options resulting
in platforms like Open Orchestrator Project (OPEN-O); Enhanced Control, Or-
chestration, Management & Policy (ECOMP), and more recently their converged
realization Open Network Automation Platform (ONAP) [9].

Although work on the development of MANO platforms is ongoing together
with standardization on the architecture, interfaces and functionality, the need
for developing intelligent solutions for core features like network slicing remains
with the platforms providing an easier path towards integrating them in a real-
istic environment. In this work we address this issue and present a policy agent
for slice admission control in virtualized 5G networks.

3 Network Slice Admission Control

This section provides an overview of a high-level network management loop that
can be applied at multiple levels of the network, specially to control the admission
of new slices. We present the system model considered by this paper, as well as
our proposal to solve the admission problem.

3.1 The Control Loop

Network management operations in many levels of the network such as service
admission or orchestration can be modeled as a closed loop operation, as de-
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picted in Fig. 1. In general, a service arrives at some part in the network which
then goes through an admission policy that decides whether it is in the interest
of the network operator or infrastructure provider to accept the service or reject
it. Services that are admitted into the network require some setup. For example,
the service might consume some infrastructure resources, and the network may
have multiple resource pools from which the resources could be provided, so the
decision of which pool to use is taken in this step. Once the new service is de-
ployed, the system enters in a general control loop where not only the deployed
service instances, but also the network, is constantly monitored and optimized.
The closed loop monitoring and control mechanism ensures that if a deployed
service instance needs more or less resources than it did at the deployment time,
then those additional resource requirements can be accommodated or unused
resource be allocated to another slice in the network. Additionally, in the case
of service completion or departure from the network, the closed loop operation
ensures that not only the resources are taken away from the departing service
but also the state of remaining services is optimized. For an intelligent admis-
sion policy, the SLA parameters observed by the departing service during its
lifetime are extremely important, since a positive or negative feedback can be
used by the admission policy to optimize its performance for future decisions.
The management and control loop depicted in Fig. 1 can be adapted to operate
in other context and various parts of the network. To demonstrate this general
management concept, we will apply it to our work proposal where we use the
closed loop approach to a high-level network operation in which network slices
are deployed onto a shared network infrastructure.

System monitoring
(flow/service SLA)

System optimization

Service setup

Service admission

Service
arrival

Service
departure

Fig. 1. Flowchart representing an overview of the general network management loop.
The dashed line represents exchange of information, for example, reporting the overall
satisfaction experienced by the service during its lifetime.

In this network sharing context, there are three distinct roles comprising the
InP: the entity that owns the infrastructure on which the slices will be executed;
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the tenant, entity that requests resources from the InP to run its services; and
a user, which will consume the services from the tenant. A slice deployment
request made from the tenant contains a SLA requirement and the InP must
provide enough resources to fulfill the SLA. Examples of SLA include network
coverage over a certain area and minimum network bandwidth. The InP has
limited resources and, therefore, in some situations cannot fulfill the SLA for all
the tenants requesting slices. That motivates the existence of the slice admission
module. Its objective is to admit as many slices as possible into the system,
with the objective of maximizing resource utilization, consequently increasing
the revenue for the infrastructure provider. The constraint is that it should not
allow slices that would have their SLA violated, or cause SLA violation for the
other deployed services. A network slice may require resources in multiple parts
of the network. For example, processing power in base stations or connectivity
in the backhaul. To setup those resources, certain decisions must be made. For
example, there are usually multiple paths connecting the base station to the
core network, and the decision of which of those paths will provide the required
connectivity for a particular slice is done at the service setup module.

Once the slice is admitted into the network, it becomes operational and the
system enters in its main control loop with respect to that service. Resources
in the system are constantly optimized so that their allocation to each slice
matches the real-time service needs. The system is also constantly monitored,
so that observed SLA by all the deployed slices is recorded and evaluated for
compliance. The last significant change in the system happens when the lifetime
of a slice ends, and it must leave the network. This triggers an optimization
of the system, so it can optimize its resources to the slices currently deployed.
The departure of a slice is also reported to the admission control, so that it can
evaluate the consequences of the admission of other slices as well as the slice
behavior. The latter enables the admission control to learn how to make better
admission decisions in future.

3.2 System Model

In this section we present the details of the considered system model for the pro-
posed neural network-based policy agent for slice admission control. Our system
model considers not only physical resources, but also the high-level components
of the network such as Virtual Network Functions (VNF) and computational and
connectivity resources that can all be a bottleneck for the different slice classes
in the network. As the main objective is to evaluate the policy agent for slice
admission against other approaches, our system model is based on the concepts
developed in Raza et al. [10].

The overall network architecture is presented in Fig. 2. Its main compo-
nents, modeling a metropolitan area, are: a couple of Regional Data Centers
(RDC), a few dozes of Central Offices (CO), and hundreds of Remote Radio
Units (RRU). The RDC provides connectivity to external networks and has
General Purpose Processors (GPP). The CO has both the Special (radio) Pur-
pose Processor (SPP) and GPP. Those resources at the CO are more expensive
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than in the cloud but can deliver a lower latency. The RRU provides the radio
access to the end users.

At the assumed abstraction level, there are some components that can be
deployed by slices. The edge (CO) and core (RDC) both provide GPP, which
can be used by slices to execute general processing functions such as a virtual
Package Processor (vPP); mobile network functions, such as Package Gateway
(PGW); and slice specific applications. The other resource is connectivity, which
enables communication between edge and core. Each CO c ∈ C has a capacity
of gc GPP, each RDC r ∈ R has a capacity of gr GPP and each link l ∈ L has a
capacity of dl link capacity units. In the assumed model, all the resources have
integer units.

BPF

Fronthaul

network
BPF

…

vPP

PGW

…

RRU

IP-based 

backhaul 

network

vPP

vPP

PGW

vPP

Central office
Regional data

center

RRU
RRU

Fig. 2. Overall architecture in a flexible mobile network. Slice require functions that
can be placed and consume resources in different parts of the network.

The described resources are consumed by slices that deploy the presented
components in the network. The maximum number of GPP that a slice can
request at each CO is kc, and at any RDC is ks; and the maximum number of
connectivity resource between them is km. Deployed slices have dynamic resource
requirements over time and if the requested resources cannot be provided by InP,
an SLA violation occurs.

Tenant t requesting a network slice must inform InP of their immediately
requested GPP at each CO jc (which indicates the region it wants to have
coverage in); the number of GPP at a RDC js; the connectivity between them
jm; the duration je; and the priority jp. If an InP reserves enough resources for
the admitted slice, it is guaranteed that no SLA penalty will be imposed and
the tenant will remain satisfied. However, the tenant does not always use the
maximum number of allocated resources and reserving them leads to resource
underutilization. Therefore, the InP can try to understand the behavior of its
tenants and sometimes oversubscribe the system by deploying additional slices so
that, with managed risk of causing SLA violation, a higher revenue is achieved.

When the slice ends its service life cycle, the InP receives its revenue for
hosting the service which is a fixed amount agreed at the time of admission
based on slice parameters. Any SLA violation causes a decrease on this value
which is proportional to the magnitude of the violation.
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The described environment model allows for the study of slice admission and
its consequences in the system. In the next section, it will be used to study new
techniques for training Reinforcement Learning (RL) slice admission agents.

3.3 Slice Admission by Reinforcement Learning

In the network slicing scenario, the objective of the InP is to increase the revenue.
In the general management loop presented in Section 3.1, one of the decisions
that can be optimized is the slice admission. Assuming that all the other proce-
dures (setup, scaling, etc.) are established, we study a RL agent that will learn
when to accept or reject a slice into the system to maximize profit. Such an agent
would have to learn how the system behaves so that it can consider the current
load in the system, understand the risk of causing an SLA violation and decide
on the slice admission.

The overall modeling of the experience acquisition in the network slicing
system is presented in Fig. 3. The diagram emphasizes the data that will be
generated and on which data the agent will learn from. In the system, there are
three events: slice arrival, slice departure and a periodic check of slice health
(requested resources).

Do not generate
more arrivals

Slice arrival

Arrival
number N?

Yes

Check admission policy,
should admit the slice?

No

Check how many resources
the slice requests

Were all the
requested
resources
available?

Release / allocate the
resources for the slice

Every time unit T
for each slice in

the system

Record a SLA violation
event and its magnitue

Add to the loss counter
Expose: current system utilization;
slice request; current loss counter

Yes

No

No

Calculate revenue that
would be generated if
the slice was accepted

and did not suffered
SLA violation

Slice departure

Fig. 3. Overview of the experience gathering in the network slicing system.
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To make the learning suitable for RL, the system is modeled in an episodic
fashion. Each episode is determined by the arrival of N slices. The objective is
to accept as many of those as possible, while avoiding SLA violation.

Upon a slice arrival, the agent is consulted to make a decision. It is made
aware of the current system utilization, the slice request parameters and the
accumulated loss suffered by the system until the time of arrival. Based on that,
it either accepts or rejects the slice. If rejected, the system interprets that some
revenue could be obtained if the system had resources to admit the slice thus
the rejection is interpreted as a loss. Accepted slices are allocated the number of
resources requested, if those are available, if only a fraction of the resources is
available, those are allocated, and an SLA violation is recorded.

The slice scaling event revisits all deployed slices in the system and checks
how many resources the slices are requesting and adjusts the resource allocation.
As before, if only a fraction of the requested resources is available, the fraction is
allocated and an SLA violation is recorded. The scaling event is fired periodically
with a period T .

When the slice finishes its execution, a slice departure event is generated,
which releases resources allocated to the slice immediately. When all the N

slices arrive and the accepted ones finish their execution, an episode is finished.
Aligned with previous work [7, 10], our RL agent is using a policy network,

which has a configurable number of inputs and hidden layers and two outputs,
representing the probability of accepting and the probability of rejecting the
slice. The input to the neural network is: the system utilization, the amount
of each resource requested by the slice, its duration, priority and tenant. This
information is encoded in a binary representation according to Ab(x), which
creates an bit field of b bits with the first x bits equal to one and the others
b − x bits equal to zero. The state vector s, when slice j is requesting to enter
the system, is then created by concatenating the bit fields: Agc(nc), Akc

(jc),
Agr (nr), Aks

(js), Adl
(nl), Akm

(jm), Ake
(min(je, ke)), A1(jp) and Ant

(t), where
nc, nr and nl are the number of busy resources at c, r and l, respectively, c ∈ C,
r ∈ R, l ∈ L, and ke represents the maximum requested duration observable by
the agent.

4 Evaluation

We evaluate the proposed method using a network topology [12] shown in Fig. 4.
The nodes with a high degree of connectivity were selected as RDC, some with
medium degree as CO, and some nodes are connection points that provide con-
nectivity routes.

Each RDC has a capacity gr = 80, each CO gc = 50 and each link dl = 50.
The reference behavior of slices (profiles) are the ones reported by Raza et al. [11].
The resource requirements of each slice are given by the time of the day and the
type of the slice. Between 9:00 and 19:00 the high-priority slice requests 20 GPP
resources at the CO, 5 connectivity resources and 5 GPP at the RDC, this is
usually the busy hours at business districts where high-priority traffic is likely to
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occur. Other than at those hours, the high-priority slice requires only 15 GPP
at the CO. The low-priority slice between 16:00 to 22:00 requires 10 GPP at
the CO, 10 connectivity resources and 10 GPP at the RDC. This is likely to
be the busy hour in residential districts, where low-priority slices are likely to
exist. During the other hours, low-priority slices require 5 GPP at the CO, 5
connectivity resources and 5 GPP at the RDC. This configuration reproduces a
network that was projected to have as main bottleneck the resources at the CO,
which are the most expensive.

CO 2

CO 3

CO 4

RDC 6

CO 7

RDC 8

CO 12

Fig. 4. Network topology used to evaluate the system.

In contrast with previous work, which considered fixed slice profiles, we as-
sume that the resource requests of a slice is non-deterministic. The current sim-
ulator accepts integer resource requests. Consequently, we chose to use a Bino-
mial distribution with 5 trials and a tenant-dependent success probability (ut) to
generate a noise. This noise is sampled every time unit and subtracted from the
resource request of each resource type of the reference profile, if this subtraction
leads to a negative resource request, it is understood as no resource needed (0).
The slices impose penalties as discussed in Section 3 and the magnitude of those
penalties is proportional to the tenant penalty weight (vt).

We configured the system to run a simulation with two tenants, t = 0 and
t = 1, and used u0 = 0.1, u1 = 0.9, v0 = 1 and v1 = 0.1. This setup makes
tenant 0 have a higher network usage, and his penalty is higher than for tenant
1, which imposes a lower usage.

We consider as baseline an admission agent that is not aware of the tenant
who is making the request [10]. The proposed strategy adds as input to the
admission agent the ID of the tenant who is requesting the slice, as described in
Section 3.3. Both agents are using a policy network with 4 hidden layers with
40 neurons in each and a ReLu activation function, following the baseline.
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We trained the system for 10,000 iterations, with 25 episodes per iteration,
each episode with a load of 80 Erlangs and 600 arrivals. With the trained model
we ran the test for a new set of 25 episodes with the same configuration.

Alongside our proposal (Prop), we show results for four other policies. BL is
the baseline, which was adapted from Raza et al. [10]. With the exception of the
tenant ID, BL has the same input as Prop. RND is the random police, i.e., it
chooses to accept or reject with equal probability. Fit accepts the slice if the InP
has enough resources to fulfill its request at admission time. Those heuristics
were defined and also used by Raza et al. [10].

The results are summarized in Fig. 5. We can observe that accepting all
the slices incurs a high scaling loss which signals that some of the slices could
have been rejected. Fit is too conservative and rejects too many slices causing
a resource underutilization. Randomly accepting the slices essentially accepts
half of them. The baseline learns a better policy and achieves a balance between
rejecting some slices and handling some scaling loss. However, it does not have
information on which tenant is requesting the slice. Thus, it cannot achieve the
performance of the proposed solution which can fine-tune the decision to the
specific tenant, and consequently find a better balance.
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Fig. 5. Overall results. Prop is the proposed policy, BL is the baseline, RND is random,
Fit accepts a slice if there are enough resources at admission time, and ACPT is accept
all the slices. The left graph shows the overall loss achieved by each policy, BL has a
loss of 271, while Prop has 262. In the middle, only the loss incurred by rejecting the
slice is shown and, on the right, only the loss incurred by scaling.

We suppose that the baseline can still infer the tenant by the level of the
usage which is indeed a function of the tenant (given ut) and is present at its
input. However, because the resource usage is noisy, it probably cannot achieve
the best possible information about the tenant which is available for the proposed
policy. To better understand which services the policies are choosing, we analyze
the rejection probability for each class of slices.

We analyze which slices are being rejected in Fig. 6. We can see that Fit
rejects more slices of tenant 0. That happens because tenant 0 usually requests
more resources compared to tenant 1 (given that u0 < u1) and so it is more
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probable that there are enough resources for its slices. Random accepts half in
any marginalization by nature. The baseline accepts more slices from tenant
0. It should have learned that rejecting tenant 0 slices incurs a higher penalty
(v0 > v1) but instead it was probably inferred from the resource. However, the
balance found by the baseline rejects more high-priority slices than low-priority
ones, which is counter intuitive, yet this can be due to no tenant awareness,
for example, the configuration of the system makes off peak hours slices from
tenant 0 and peak hours slices from tenant 1 have similar resource usage and
priority, but different penalties. Finally, the proposed strategy seems to reject
almost all the tenant 1 slices in exchange for a higher acceptance of tenant 0. It
also manages to find a point where higher priority slices are more often accepted
compared to lower priority ones.
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Fig. 6. Rejection probability for each policy (columns), marginalized by tenant (top
line), or by priority (bottom line). ACPT policy is not shown, because it is zero for all
cases.

Another way to investigate how slices are being classified is to examine the
rejection probability marginalized by tenant and priority, shown in Fig. 7. We
can use the same rationale for Fit: it accepts more of the low priority from tenant
1, then low priority from tenant 0, then high priority from tenant 1 and high
priority from tenant 0. That is exactly the expected sequence of slices if they are
ordered by the expected magnitude of its resource request when compared to
each other. Random once again accepted half of each class. For the baseline, we
can see that it understands that some classes are more important than others,
but it seems, for example, that it cannot identify that high-priority slices from
tenant 0 are more valuable than low priority ones from the same tenant. That is
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one of the behaviors that the proposed method could learn: it also rejects most
of the slices from tenant 1, that can happen because the load is high, and there
are enough slices from tenant 0, so it can be lucrative enough, at lower loads the
behavior can be different.
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Fig. 7. Rejection probability for each policy (columns) marginalized by tenant and
priority. Accept all is not shown, since it is zero for all the cases.

5 Conclusion

This work presented a reinforcement learning-based policy agent for slice ad-
mission control in virtualized 5G networks. We evaluated our proposal in a sce-
nario where slice requests have a stochastic resource requirements footprint and
admission control is non-trivial. Our network model included the concept of
different tenants that give different revenues, consequently increasing the pos-
sible combinations of admission decisions. In this context, we showed that the
tenant-awareness contributes to a better admission policy and brings more rev-
enue to the InP. We evaluated our proposed admission policy in a simulated
environment and compared the performance to other related strategies. As fu-
ture work, we intend to evaluate the policy agent in more challenging system
context where network and slices dynamics are increased. Another topic to be
investigated is the proportion of tenants. The presented results only considered
a uniform number of requests for each tenant but in real networks, the number
of slices deployed or requested for each tenant will change over time. Finally, the
performance of other machine learning algorithms in a similar dynamic system
will be evaluated.
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