
ar
X

iv
:1

90
5.

03
63

5v
1

 [
cs

.C
R

]
 9

 M
ay

 2
01

9

Practical Algebraic Attack on DAGS

Magali Bardet1, Manon Bertin1, Alain Couvreur2, and Ayoub Otmani1

1 LITIS, University of Rouen Normandie
Avenue de l’université

76801 Saint-Étienne-du-Rouvray, France
{magali.bardet,manon.bertin8,Ayoub.Otmani}@univ-rouen.fr

2 INRIA & LIX, CNRS UMR 7161
École polytechnique, 91128 Palaiseau Cedex, France

alain.couvreur@lix.polytechnique.fr

Abstract. DAGS scheme is a key encapsulation mechanism (KEM)
based on quasi-dyadic alternant codes that was submitted to NIST stan-
dardization process for a quantum resistant public key algorithm. Re-
cently an algebraic attack was devised by Barelli and Couvreur (Asi-
acrypt 2018) that efficiently recovers the private key. It shows that DAGS
can be totally cryptanalysed by solving a system of bilinear polynomial
equations. However, some sets of DAGS parameters were not broken in
practice. In this paper we improve the algebraic attack by showing that
the original approach was not optimal in terms of the ratio of the number
of equations to the number of variables. Contrary to the common belief
that reducing at any cost the number of variables in a polynomial system
is always beneficial, we actually observed that, provided that the ratio
is increased and up to a threshold, the solving can be heavily improved
by adding variables to the polynomial system. This enables us to recover
the private keys in a few seconds. Furthermore, our experimentations
also show that the maximum degree reached during the computation of
the Gröbner basis is an important parameter that explains the efficiency
of the attack. Finally, the authors of DAGS updated the parameters to
take into account the algebraic cryptanalysis of Barelli and Couvreur.
In the present article, we propose a hybrid approach that performs an
exhaustive search on some variables and computes a Gröbner basis on
the polynomial system involving the remaining variables. We then show
that the updated set of parameters corresponding to 128-bit security can
be broken with 283 operations.

Keywords: Quantum safe cryptography · McEliece cryptosystem · Al-
gebraic cryptanalysis · Dyadic alternant code.

1 Introduction

The design of a quantum-safe public key encryption scheme is becoming an
important issue with the recent process initiated by NIST to standardize one or
more quantum-resistant public-key cryptographic algorithms. One of the oldest
cryptosystem that is not affected by the apparition of a large-scale quantum

http://arxiv.org/abs/1905.03635v1

2 Magali Bardet, Manon Bertin, Alain Couvreur, and Ayoub Otmani

computer is the McEliece public key encryption scheme [26]. It is a code-based
cryptosystem that uses the family of binary Goppa codes. The main advantage
of this cryptosystem is its very fast encryption/decryption functions, and the
fact that up to the present, nobody has succeeded to cryptanalyse it.

But in the eyes of those who are concerned with applications requiring very
compact schemes, these positive aspects of the McEliece cryptosystem may not
make up for its large keys. For instance the classic McEliece [10] submitted
to NIST uses at least 1MB public keys for 256 bits of security. A well-known
approach for getting smaller keys consists in replacing binary Goppa codes by
even more structured linear codes. A famous method started in [23] and further
developed in [9,27,6,3] relies on codes displaying symmetries like cyclicity and
dyadicity while having very efficient decoding algorithms. Unlike the McEliece
cryptosystem which currently remains unbroken, the schemes [9,27] are subject
to efficient ciphertext-only attacks [20] that recover the secret algebraic struc-
ture. The attack developed in [20] formulates the general problem of recovering
the algebraic structure of an alternant code as solving a system of polynomial
equations. But it involves very high degree polynomial equations with too many
variables. Finding solutions to this kind of algebraic system is currently out of
reach of the best known algorithms. However this approach turns out to be ex-
tremely fruitful when dealing with polynomial systems that come from the quasi-
cyclic [9] and quasi-dyadic [27] cryptosystems because the symmetries permit to
reduce to a manageably small number of variables.

The apparition of the algebraic attack in [20] generated a series of new alge-
braic attacks [17,19,21] but since the original McEliece cryptosystem does not
seem to be affected by this approach, it still raises the question of whether it
represents a real threat.

Recently a new algebraic attack [8] was mounted against DAGS [3] scheme.
DAGS is a key encapsulation mechanism (KEM) based on quasi-dyadic alternant
codes defined over quadratic extension. It was submitted to the standardisation
process launched by NIST. The attack relies on the component-wise product of
codes in order to build a system of bilinear multivariate equations. The use of the
component-wise product of codes in cryptography is not new. It first appeared in
[29] and has proved in several occasions [24,25,14,28] to be a powerful cryptan-
alytic tool against algebraic codes like Generalised Reed-Solomon codes. It even
enabled to mount for the first time a polynomial-time attack in [15,16] against
a special family of non-binary Goppa codes [11] displaying no symmetries.

Our contribution. In this paper we improve the algebraic attack of [8] by
showing that the original approach was not optimal in terms of the ratio of the
number of equations to the number of variables. Contrary to the common belief
that reducing at any cost the number of variables in a polynomial system is
always beneficial, we actually observed that, provided that the ratio is increased
and up to a threshold, the solving can be heavily improved by adding variables
to the polynomial system. This enables us to recover the private keys in a few
seconds. In Table 1 we report the average running times of our attack and that

Practical Algebraic Attack on DAGS 3

of [8] performed on the same machine. For DAGS-1 and DAGS-5, the linear
algebra part of the attack is the dominant cost.

Furthermore, our experimentations show that the maximum degree reached
during the computation of the Gröbner basis is an important parameter that
explains the efficiency of the attack. We observed that the maximum degree
never exceeds 4.

Subsequently to the attack [8], the authors of DAGS updated the parameters.
We propose a hybrid approach that performs an exhaustive search on some
variables and computes a Gröbner basis on the polynomial system involving the
remaining variables. We then show that one set of parameters does not have
the claimed level of security. Indeed the parameters corresponding to 128-bit
security can be broken with 283 operations.

Table 1. Running times of the algebraic attack to break DAGS scheme. The com-
putations are performed with Magma V2.23-1 on an Intel Xeon processor clocked at
2.60GHz with 128Gb. We reproduced the computations from [8] on our machine. The
columns “Gröbner” correspond to the Gröbner basis computation part, the columns
“Linear algebra” to the linear algebra steps of the attack.

Parameters Security [8] The present article
Gröbner Linear Total Gröbner Linear Total

algebra algebra

DAGS-1 128 552s 8s 560s 3.6s 6.4s 10s
DAGS-3 192 – – – 70s 16s 86s
DAGS-5 256 6s 20s 26s 0.5s 15.5s 16s

Organisation of the paper. Section 2 introduces the useful notation and
important notions to describe the DAGS scheme. Section 3 recalls the important
properties about the component-wise product of GRS and alternant codes. In
Section 4 we describe the algebraic attack, and in Section 5 the practical running
times we obtained with our experimentations. Lastly, Section 6 explains the
hybrid approach.

2 Preliminaries

Notation. Fq is the field with q elements. In this paper, q is a power of 2.
For any m and n in Z, Jm,nK is the set of integers i such that m 6 i 6 n. The
cardinality of set A is |A|. Vectors and matrices are denoted by boldface letters as
a = (a1, . . . , an) and A = (ai,j). The Symmetric group on n letters is denoted by

Sn and for any v = (v1, . . . , vn) and σ in Sn we define vσ ,
(

vσ(1), . . . , vσ(n)
)

.
The identity matrix of size n is written as In. The transpose of a vector a and a

4 Magali Bardet, Manon Bertin, Alain Couvreur, and Ayoub Otmani

matrix A is denoted by aT and AT . The i-th row of a matrix A = (ai,j) is A[i].
We recall that the Kronecker product a⊗ b of two vectors a = (a1, . . . , an) and
b is equal to (a1b, . . . , anb). In particular, we denote by 1n the all–one vector
1n , (1, . . . , 1) ∈ Fn

q and we have 1n ⊗ a = (a, . . . ,a) and

a⊗ 1n = (a1, . . . , a1, a2, . . . , a2, . . . , an, . . . , an).

Any k-dimensional vector subspace C of Fn where F is field is called a linear

code C of length n and dimension k < n over F. A matrix whose rows form a
basis of C is called a generator matrix. The orthogonal or dual of C ⊂ Fn is
the linear space C⊥ containing all vectors z from Fn such that for all c ∈ C ,
we have 〈c, z〉 ,

∑n
i=1 cizi = 0. We always have dimC ⊥ = n− dimC , and any

generator matrix of C⊥ is called a parity check matrix of U . The punctured code
PI (C) of C over a set I ⊂ J1, nK is defined as

PI (C) ,
{

u ∈ Fn−|I| | ∃c ∈ C , u = (ci)i∈J1,nK\I

}

.

The shortened SI (C) code of C over a set I ⊂ J1, nK is then defined as

SI (C) , PI

({

c ∈ C | ∀i ∈ I, ci = 0
})

.

We extend naturally the notation PI (·) to vectors and matrices.

Algebraic codes. A generalized Reed-Solomon code GRSt(x,y) of dimension t
and length n where x is an n-tuple of distinct elements from a finite field F and
y is an n-tuple of non-zero elements from F is the linear code defined by

GRSt(x,y) ,
{

(

y1f(x1), . . . , ynf(xn)
)

| f ∈ F<t[z]
}

(1)

where F<t[z] is the set of univariate polynomials f with coefficients in F such that
deg f < t. The dimension of GRSt(x,y) is clearly t. By convention GRSt(x,1n)
where 1n is the all-one vector of length n is simply a Reed-Solomon code denoted
by RSt(x).

The code GRSt
⊥(x,y) is equal to GRSn−t(x,y

⊥) where y⊥ = (y⊥1 , . . . , y
⊥
n)

is the n-tuple such that for all j in J1, nK it holds that

(

y⊥j
)−1

= yj

n
∏

ℓ=1,ℓ 6=j

(xℓ − xj). (2)

An alternant code At(x,y) of degree t > 1 over a field K (F and length n
where x is an n-tuple of distinct elements from Fn and y is an n-tuple of non-
zero elements from Fn is the linear code

At(x,y) , GRSn−t(x,y
⊥) ∩Kn = GRS

⊥
t (x,y) ∩Kn. (3)

The dimension of an alternant code satisfies the bound dimAt(x,y) > n −mt
where m is the degree of the field extension of F/K.

Practical Algebraic Attack on DAGS 5

Remark 1. Note that one has always the inclusions GRSr(x,y) ⊆ GRSt+r(x,y)
and At+r(x,y) ⊆ Ar(x,y) for any r > 1 and t > 1.

Proposition 1. Let GRSk(x,y) be a generalized Reed-Solomon code of dimen-

sion k where x is an n-tuple of distinct elements from Fqm and y is an n-tuple
of non-zero elements from Fqm . For any affine map ζ : Fqm → Fqm defined as

ζ(z) , az + b where a in Fqm \ {0} and b in Fqm it holds that

GRSk

(

ζ(x),y
)

= GRSk(x,y).

Remark 2. A consequence of Proposition 1 is that it is possible to choose arbi-
trary values for two different coordinates xi and xj (i 6= j) provided that they
are different. For instance we may always assume that x1 = 0 and x2 = 1.

Another very important result from this proposition is that when an affine
map ζ(z) = az + b leaves globally invariant x then it induces a permutation σ
of Sn thanks to the identification:

∀i ∈ J1, nK, xσ(i) , ζ(xi).

We call σ the permutation induced by the affine map ζ. For the ease of notation
we shall systematically identify σ and ζ.

Dyadic codes. A code C ⊂ Fn is quasi-dyadic of order 2γ where γ is a non-
negative integer if there exists G ⊆ Sn that is isomorphic to F

γ
2 such that

∀(σ, c) ∈ G× C , cσ ∈ C .

A construction of quasi-dyadic GRS and alternant codes is given in [18]. It
considers γ elements b1, . . . , bγ in Fqm that are linearly independent over F2.
The vector space ⊕γ

i=1F2 · bi generated over F2 is then equal to a group G. Next,
it takes an n0-tuple τ = (τ1 . . . , τn0

) from Fn0

qm such that the cosets τi + G are
pairwise disjoint, and finally it picks an n0-tuple y = (y1, . . . , yn0

) composed
of nonzero elements from Fqm . We now consider z , y ⊗ 12γ and x , τ ⊗

12γ + 1n0
⊗ g where g , (g)g∈G. The action of G can then be described more

explicitly: for any b in G we associate the translation defined for any z in Fqm

by σb(z) , z + b. It is clear that σb leaves globally invariant x because we have
σb(G) = b+G = G and furthermore the following holds

σb(x) = x+ b⊗ 12γn0
= τ ⊗ 12γ + 1n0

⊗ σb(g).

Proposition 2 ([18]). Let K be a subfield of Fqm , n0, γ, G, y and τ defined

as above and n , 2γn0, g , (g)g∈G, z , y ⊗ 12γ and x , τ ⊗ 12γ + 1n0
⊗ g.

The codes GRSr(x, z) ⊂ Fn
qm and At(x, z) ⊂ Kn are quasi-dyadic of order 2γ.

Example 1. Let us take n0 = 2 and γ = 2 then g = (0, b1, b2, b1 + b2) and
x = (τ1, τ1 + b1, τ1 + b2, τ1 + b1+ b2)||(τ2, τ2+ b1, τ2+ b2, τ2+ b1+ b2). The group
G is then equal to {0, b1, b2, b1 + b2}. We have σb1(g) = (b1, 0, b2 + b1, b2) and
the permutation that corresponds to b1 is (12)(34)(56)(78) in the canonical cycle
notation. ⊓⊔

6 Magali Bardet, Manon Bertin, Alain Couvreur, and Ayoub Otmani

DAGS scheme. The public key encryption scheme DAGS [1,2] submitted to the
NIST call for post quantum cryptographic proposals is a McEliece-like scheme
with a conversion to a KEM. It relies on quasi-dyadic alternant codes Ar =
GRS

⊥
r (x, z) ∩ Fn

q with q = 2s with GRS
⊥
r (x, z) ⊂ Fn

q2 (m = 2). The public code
Ar is quasi-dyadic of order 2γ where γ > 1. The parameters are chosen such
that r = 2γr0 and n = 2γn0, and the dimension is k = 2γk0 with k0 , n0 − 2r0.

Keeping up with the notation of Proposition 2 the vectors x and z can be
written as x , τ ⊗ 12γ + 1n0

⊗ g and z , y ⊗ 12γ with g = (g)g∈G where G =
⊕γ

i=1F2bi is the vector space generated over F2 by γ elements b = (b1, . . . , bγ) that
are linearly independent over F2. The quantities b and y are randomly drawn
from Fn0

q2 such that the cosets τi +G are pairwise disjoint and y is composed of
nonzero elements in Fq2 .

The public key is then an (n − k) × n parity check matrix Hpub of Ar.
The quantities (b, τ ,y) have to be kept secret since they permit to decrypt any
ciphertext. Table 2 gathers the parameters of the scheme.

Table 2. DAGS-1, DAGS-3 and DAGS-5 correspond to the initial parameters (v1).
When the algebraic attack [8] appeared the authors updated to DAGS-1.1, DAGS-3.1
and DAGS-5.1 (v2).

Name Security q m 2γ n0 k0 r0

DAGS-1 128 25 2 24 52 26 13
DAGS-3 192 26 2 25 38 16 11
DAGS-5 256 26 2 26 33 11 11

DAGS-1.1 128 26 2 24 52 26 13
DAGS-3.1 192 28 2 25 38 16 11
DAGS-5.1 256 28 2 25 50 28 11

3 Component-wise Product of Codes

An important property about GRS codes is that whenever a belongs to GRSr(x,y)
and b belongs to GRSt(x, z), the component wise product a⋆b , (a1b1, . . . , anbn)
belongs to GRSt+r−1(x,y ⋆ z). Furthermore, if one defines the component wise
product A ⋆ B of two linear codes A ⊂ Fn and B ⊂ Fn as the linear code
spanned by all the products a ⋆ b with a in A and b in B the inclusion is then
an equality

GRSr(x,y) ⋆ GRSt(x, z) = GRSr+t−1(x,y ⋆ z). (4)

In the case of alternant codes over a subfield K ⊆ F, one only gets in general the
inclusion

(

GRSn−r(x,y
⊥) ∩Kn

)

⋆ (GRSt(x,1n) ∩Kn) ⊆ GRSn−r+t−1(x,y
⊥) ∩Kn (5)

Practical Algebraic Attack on DAGS 7

which leads to the following result.

Proposition 3 ([8]). For any integer r > 1 and t > 1 the alternant codes

Ar+t−1(x,y) and Ar(x,y) over K (F where x is an n-tuple of distinct elements

from a finite field F and y is an n-tuple of non-zero elements from F satisfy the

inclusion

Ar+t−1(x,y) ⋆ (RSt(x) ∩Kn) ⊆ Ar(x,y). (6)

The previous result is really interesting when RSt(x) ∩ Kn is not the (triv-
ial) code generated by 1n. This happens for instance for F = Fqm and K =
Fq when t = qm−1 + 1 because RSt(x) ∩ Fn

q then always contains at least

1n and TFqm/Fq
(x) ,

(

TFqm/Fq
(x1), . . . ,TFqm/Fq

(xn)
)

. Actually one can ob-
serve that TFqm/Fq

(αx) also always belongs to RSt(x) ∩ Fn
q for all α in Fqm .

Hence if {1, ω1, . . . , ωm−1} form an Fq-basis of Fqm then α can be written as
α0 + α1ω1 + · · · + αm−1ωm−1 with α0, . . . , αm−1 in Fq, and consequently with

the convention that ω0 , 1 one has that

TFqm/Fq
(αx) =

m−1
∑

i=0

αi TFqm/Fq
(ωix).

This implies that dimFq
RSt(x)∩Fn

q > m+1 when t = qm−1+1. Another interest-

ing case is when t = qm−1
q−1 +1 then NFqm/Fq

(x) ,
(

NFqm/Fq
(x1), . . . ,NFqm/Fq

(xn)
)

belongs to RSt(x) ∩ Fn
q , and one would get that dimFq

RSt(x) ∩ Fn
q > m+ 2.

4 Algebraic Cryptanalysis

We present the ciphertext-only attack of [8] that recovers the private key of
DAGS scheme. We refer to Section 2 for the notation. The public key is a parity-
check matrix Hpub of a quasi-dyadic alternant code Ar. The attack recovers the
secret values b = (b1, . . . , bγ), τ = (τ1, . . . , τn0

) and y = (y1, . . . , yn0
). The idea

is to exploit the fact that

Ar+t−1(x,y ⊗ 12γ) ⋆
(

RSt(x) ∩ Fn
q

)

⊆ Ar(x,y ⊗ 12γ). (7)

where x = τ ⊗ 12γ + 1n0
⊗ g with g = (g)g∈G and G = ⊕γ

i=1F2bi. Because the
secret vector y is not anymore involved in the definition of RSt(x) an attacker
gains a real advantage if she manages to identify the codewords that are con-
tained in RSt(x) ∩ Fn

q , especially when t > q + 2 (see [8] for more details). The

attack of [8] introduces the invariant code A G
r with respect to G of Ar which is

defined as

A
G

r ,
{

(c1, . . . , cn) ∈ Ar | ∀(i, j) ∈ J0, n0 − 1K × J1, 2γK, ci2γ+j = ci2γ+1

}

.

The dimension of A G
r is equal to k0 (see [7,8]). The cryptanalysis relies then on

finding two vector spaces D and N such that the constraints given in (8) hold

D (A G
r ,

dimD = k0 − c where c , mqm−1

2γ = q
2γ−1 ,

D ⋆ N ⊆ Ar.

(8)

8 Magali Bardet, Manon Bertin, Alain Couvreur, and Ayoub Otmani

Let us recall that Ar and A G
r are known, especially it is simple to compute

a generator matrix Ginv of A G
r . Since D (A G

r and dimD = k0 − c there
exists a (k0 − c) × k0 matrix K such that KGinv generates D . On the other

hand N necessarily satisfies the inclusion3 N ⊆
(

D ⋆ A ⊥
r

)⊥

and consequently
(

KGinv

)

⋆Hpub is a parity check matrix of N . We are now able to state (without
proof) an important result justifying the interest of this approach.

Theorem 1 ([8]). Let us assume that |G| 6 q. Let D be the invariant code of

Ar+q(x, z) and let N be the vector space generated over Fq by 1n, TF
q2

/Fq
(x)

TF
q2

/Fq
(ωx) and NF

q2
/Fq

(x) where {1, ω} is an Fq-basis of Fq2 . Then D and N

are solution to (8).

Remark 3. Considering now the vector space generated by N over Fq2 one can
see that x is also solution to (8) using this simple identity

x = (ωq − ω)−1
(

ωq TF
q2

/Fq
(x)− TF

q2
/Fq

(ωx)
)

.

The algebraic attack of [8] recovers D and N satisfying (8) by introducing two
sets of variables V = (V1, . . . , Vn) and K = (Ki,j) with i ∈ J1, k0 − cK and
j ∈ J1, k0K that satisfy the multivariate quadratic system

(

KGinv

)

⋆Hpub · V
T = 0.

The number of variables of this system can be very high which is a hurdle to
solving it efficiently in practice. However this algebraic system does not take into
account three observations that enable us to significantly reduce the number of
variables.

– We know by Theorem 1 that TF
q2

/Fq
(x) (and x) are solution to (8) which

means that we may assume that V has a “quasi-dyadic” structure. We define
two sets of variables T = (T1, . . . , Tn0

) and B = (B1, . . . , Bγ) so that we

can write V = T ⊗ 12γ + 1n0
⊗ (F2 ·B) where F2 · B , ⊕γ

i=1F2Bi is the
vector formed by all the elements in the F2-vector space generated by B.
More precisely, F2 · (B1) = (0, B1) and by induction, F2 · (B1, . . . , Bi) =
F2 · (B1, . . . , Bi−1)|| (Bi ⊗ 12γ + F2 · (B1, . . . , Bi−1)). For instance,
F2 · (B1, B2, B3) = (0, B1, B2, B1+B2, B3, B1+B3, B2+B3, B1+B2+B3).

– Thanks to the shortening of D and the puncturing of N we are able to even
more reduce the number of unknowns because for any I ⊂ J1, nK it holds

SI (D) ⋆ PI (N) ⊆ SI (Ar) . (9)

3 It was observed experimentally in [8] that actually the inclusion is most of the time
an equality.

Practical Algebraic Attack on DAGS 9

– Lastly, if the first (k0− c) columns of K form an invertible matrix S, we can
then multiply the polynomial system by S−1 without altering the solution
set. Therefore we may assume that the first columns of K forms the iden-
tity matrix, i.e. K =

(

Id U
)

. Of course this observation also applies when
considering the polynomial system defined in (9).

The algebraic attack harnesses (9) by first picking a set I ⊂ J1, nK of cardi-
nality 2γa0 such that I is the union of a0 disjoint dyadic blocks. The different
steps are described below:

1. Recover SI (D) and PI (N) by solving the quadratic system

(

Id U
)

SI (Ginv) ⋆ PI (Hpub) · PI (V)
T
= 0 (10)

where d , dimSI (D) = k0 − c− a0 and V = T ⊗ 12γ + 1n0
⊗ (F2 ·B).

2. Reconstruct PI (x) from SI (D) and PI (N).

3. Recover PI (y) then x and y using linear algebra.

Remark 4. Because of the particular form of the generator matrix of SI (D) in
(10), the system may have only a trivial solution. In other words, the polynomial
system will provide SI (D) if it admits a generator matrix such that its first d

columns form an invertible matrix, which holds with probability
∏d

i=1

(

1− q−i
)

.

Remark 5. The attack searches for a code D ⊂ A G
r of dimension k0 − c. When

c > k0, like DAGS-3.1 where k0 = c = 16, this code does not exist. But it is
possible to use Ar

⊥ instead of Ar to search for a code E ⊂ (Ar
⊥)G of dimension

n0 − k0 − c such that
E ⋆ N ⊂ Ar

⊥ (11)

We will not present this version here because it does not give practical improve-
ments.

The authors in [8] addressed Steps 2 and 3 by showing that it relies only
on linear algebra with matrices of size at most n and can be done in O(n3)
operations. In this paper, we are mainly interested in Step 1 and the computation
of a Gröbner basis of (10).

Solving (10) using Gröbner bases. Using Prop. 1 and the fact that an
affine map preserves the quasi-dyadic structure, we can assume that b1 = 1
and τn0

= 0. Moreover, any vector in the code PI (N) is a solution to the
system, in particular TF

q2
/Fq

(b2)
−1 TF

q2
/Fq

(PI (x)), so we know that a solution

with B2 = 1 exists.

Remark 6. Note that TF
q2

/Fq
(b2) is not invertible if b2 ∈ Fq, which arises with

probability 1
q , but in this case a solution with B2 = 0, B3 = 1 exists in the

system and we may specialize one more variable.

10 Magali Bardet, Manon Bertin, Alain Couvreur, and Ayoub Otmani

The following theorem identifies in (10) the number of equations and vari-
ables.

Theorem 2. If Ginv and Hpub are in systematic form and I = J1, a02
γK then

the polynomial system (10) with Tn0
= 0, B1 = 0, B2 = 1 contains

nU = (k0 − c− a0) c variables in U

nT = n0 − k0 + c− 1 variables Tk0−c+1, . . . , Tn0−1

nB = γ − 2 variables B3, . . . , Bγ

(k0 − c− a0) (n0 − k0 − 1) quadratic equations

(12)

that are bilinear in the variables U and the variables in V , as well as k0− c−a0
equations of the form

Ti = Pi(U [i], Tn0−k0+1, . . . , Tn0−1,B), i ∈ J1, k0 − c− a0K

where Pi is a bilinear polynomial in the variables U and V .

Proof. The hypothesis that V = T ⊗ 12γ + 1n0
⊗ (F2 ·B) reduces the number

of variables, the number of solutions of the system (it restricts to quasi-dyadic
solutions), but it also reduces the number of equations in the system by a factor
2γ . Indeed, if we consider two rows c and cσ from Hpub in the same quasi-
dyadic block, where σ ∈ G, then for any row u = uσ from the invariant matrix
(

Id U
)

SI (Ginv), the component-wise product with cσ satisfies u⋆cσ = (u⋆c)σ

and the resulting equations are (u ⋆ c)σ · V T = (u ⋆ c · V T)σ = u ⋆ c · V T as
V = V σ + σ1n and u ⋆ c · 1n = 0.

The i-th row of
(

Id U
)

Ginv contributes to n0 − k0 equations that contain
the variables in the i-row U [i] of U , B and Ti, Tk0−c+1, . . . , Tn0−1. Moreover,
by using the fact that the matrices are in systematic form, the component-wise
product of this row by the i-th row of Hpub (the row in the i-th block as we
take only one row every 2γ rows) gives a particular equation that expresses Ti

in terms of Tn0−k0+1, . . . , Tn0−1, B and U [i]. ⊓⊔

5 Experimental Results

This section is devoted to the experimental results we obtained for computing a
Gröbner basis. We consider two approaches for solving (10). The first one consists
in solving the system without resorting to the shortening of codes (I = ∅). The
second one treats the cases where we solve the system by shortening on I with
different cardinalities.

We report the tests we have done using Magma [13] on a machine with a
Intel R© Xeon R© 2.60GHz processor. We indicate in the tables the number of clock
cycles of the CPU, given by Magma using the ClockCycles() function, as well
as the time taken on our machine.

Practical Algebraic Attack on DAGS 11

Solving (10) without shortening. The polynomial systems for the original
DAGS parameters (DAGS-1, DAGS-3 and DAGS-5) are so overdetermined that
it is possible to compute directly a Gröbner basis of (10) without shortening
(a0 = 0 i.e I = ∅). Table 3 gives the number of variables and equations for the
DAGS parameters. One can see that there are at least 3 times as many equations
as variables for the original parameters.

Moreover, the complexity of computing Gröbner bases is related to the high-
est degree of the polynomials reached during the computation. A precise analysis
has been done for generic overdetermined homogeneous systems (called “semi-
regular” systems) in [4,5] and for the particular case of generic bilinear systems
in [22]. For generic overdetermined systems, this degree decreases when the num-
ber of polynomials increases. For DAGS-1, DAGS-3 and DAGS-5, the highest
degree is small (3 or 4). Linear equations then appear at that degree which ex-
plains why we are able to solve the systems, even if the number of variables is
quite large (up to 119 variables for DAGS-1).

Table 3. Computation time for the Gröbner basis of (10) without shortening D (I = ∅).
The columns “dimD” and “c” correspond to the dimension of D and the value of
c = q

2γ−1 . The columns nU and nV = nB + nT give the number of variables U and
B∪T respectively. The column “Var.” is equal to the total number of variables nU+nV

while the column “Eq.” indicates the number of equations in (10). “Ratio” is equal to
the ratio of the number of equations to the number of variables. “Gröb.” gives the
number of CPU clock cycles as given by the ClockCycles() function in Magma on
IntelR© XeonR© 2.60GHz processor. “Deg.” gives the degree where linear equations are
produced. The column “Mat. size” is the size of the biggest matrix obtained during
the computations.

Param. dimD c nU nV Var. Eq. Ratio Gröb. Deg. Mat. size

DAGS-1 22 4 88 31 119 550 4.6 244 3 314,384 × 401,540
DAGS-3 12 4 48 28 76 252 3.3 244 4 725,895 × 671,071
DAGS-5 9 2 18 27 45 189 4.2 233 3 100,154 × 8,019

Solving (10) with shortening. Shortening (10) on the i-th dyadic block con-
sists exactly in selecting a subset of the system that does not contain variables
from U [i]. If we are able to shorten the system without increasing the degree
where linear equations appear, then the Gröbner basis computation is faster
because the matrices are smaller.

For each set of parameters and for different dimensions of SI (D), we ran 100
tests. The results are shown in Table 4. For these tests we always assumed that
b2 /∈ Fq (see Remark 6 for more details). We recall that when b2 ∈ Fq we may
specialize one more variable, that is to say we take B1 = 0, B2 = 0 and B3 = 1,
and we are able to solve the system. In Table 4 we can see that the best results
are obtained with dimSI (D) = 4 for DAGS-1, even if the number of variables

12 Magali Bardet, Manon Bertin, Alain Couvreur, and Ayoub Otmani

is not the lowest. This can be explained for DAGS-1 by the fact that highest
degree is 3 while when dimSI (D) = 2 or 3, the highest degree is 4.

The figures obtained for DAGS-3 show that the highest degree is 4 for any
value of dimSI (D) > 3. But when dimSI (D) = 4 more linear equations are
produced because the ratio of the number of equations to the number of variables
is larger. With a dimSI (D) = 2, as Barelli and Couvreur [8] used in their attack,
the ratio is small (1.17), and the maximal degree reached during the Gröbner
basis computation is too large (> 6) to get a reasonable complexity. We had
to stop because of a lack of memory and there was no linear equation at this
degree.

For DAGS-5 the value of dimSI (D) has less influence on the performances
because the system always has linear equations in degree 3.

Table 4. Computation time for the Gröbner basis in (10) with the shortening of D . The
column “Gröb.” gives the number of CPU clock cycles as given by the ClockCycles()
function in Magma on IntelR© XeonR© 2.60GHz processor.

Param. dimSI (D) Var. Eq. Ratio Gröb. Time Mem. (GB) Deg. Mat. size

DAGS-1 2 39 50 1.28 239 276s 2.21 4 76,392 × 62,518
3 43 75 1.74 238 163s 1.11 4 97,908 × 87,238
4 47 100 2.13 233 4s 0.12 3 11,487 × 9,471
5 51 125 2.45 234 6s 0.24 3 11,389 × 13,805

DAGS-3 2 36 42 1.17 – – > 139 > 6 –
3 40 63 1.58 239 321s 1.24 4 85,981 × 101,482
4 44 84 1.91 237 70s 1.11 4 103,973 × 97,980
5 48 105 2.19 238 140s 1.48 4 170,256 × 161,067

DAGS-5 2 31 42 1.35 231 0.4s 0.12 3 6,663 × 4,313
3 33 63 1.91 231 0.4s 0.13 3 4,137 × 4,066
4 35 84 2.40 231 0.5s 0.15 3 5,843 × 4,799
5 37 105 2.84 231 0.4s 0.19 3 6,009 × 4,839

Updated DAGS parameters. After the publication of the attack in [8], the
authors of DAGS proposed new parameters on their website [2]. They are given
in Table 2. The computation of the Gröbner basis is no longer possible with
this new set of parameters. For DAGS-1.1, the number of variables is so high
that the computation involves a matrix in degree 4 with about two millions of
rows, and we could not perform the computation. For DAGS-3.1, as c = k0,
the code D does not exist. Even by considering the dual of the public code as
suggested by Remark 5, it was not feasible to solve the system. This is due to
the fact the system is underdetermined: the ratio is 0.7 as shown in Table 3. As
for DAGS-5.1, the system has too many variables and the ratio is too low.

Practical Algebraic Attack on DAGS 13

Table 5. Updated parameters. Columns are the same as Table 3

Param. dimD c nU nV Var. Eq. Ratio

DAGS-1.1 18 8 144 35 179 450 2.5
DAGS-3.1 0 16 – – – 0 0
DAGS-3.1 dual 6 16 96 34 130 90 0.7
DAGS-5.1 12 16 192 40 232 252 1.1

However, as the systems are bilinear, a simple approach consisting in spe-
cializing a set of variables permits to get linear equations. For instance, with
the new parameters for DAGS-1.1, and according to Theorem 2, the algebraic
system contains k0 − c = dimD = 18 sets of n0 − k0 − 1 = 25 equations bilinear
in c = 8 variables U and n0−k0+c+γ−3 = 35 variables V . If we specialize the
U variables in a set of equations, we get 25 linear equations in 35 variables V . As
q = 26 for DAGS-1.1, specializing 16 variablesU gives a set of 50 linear equations
in 35 variables that can be solved in at most 353 < 215.39 finite field operations,
and breaking DAGS-1.1 requires to test all values of the 16 variables U in Fq,
hence 296 specializations, leading to an attack with 2111.39 operations, below the
128-bit security claim. This new set of parameters for DAGS-1.1 clearly does not
take into account this point.

The next section will show how to cryptanalyze efficiently the DAGS-1.1
parameters.

6 Hybrid Approach on DAGS v2

We will show in this section that a hybrid approach mixing exhaustive search
and Gröbner basis provides an estimated work factor of 283 for DAGS-1.1.

As the algebraic system is still highly overdetermined with a ratio of 2.5 be-
tween the number of variables and the number of equations, we can afford to
reduce the number of variables by shortening D over a0 dyadic blocks while keep-
ing a ratio large enough. For instance if a0 = k0 − c− 2 we have dimSI (D) = 2
and a system of 50 bilinear equations in 51 variables. On the other hand, spe-
cializing some variables as in the hybrid approach from [12] permits to increase
the ratio. For each value of the variables we compute a Gröbner basis of the spe-
cialized system. When the Gröbner basis is 〈1〉, it means that the system has no
solution, and it permits to “cut branches” of the exhaustive search. Experimen-
tally, computations are quite fast for the wrong guesses, because the Gröbner
basis computation stops immediately when 1 is found in the ideal.

Moreover, if we specialize an entire row of c variables U , as the equations
are bilinear in U and V , then we get n0 − k0 − a0 linear equations in V , which
reduces the number of variables. Table 6 gives the complexity of the Gröbner
basis computation for DAGS1.1, for c = 8 variables U specialized and different
values of dimSI (D).

14 Magali Bardet, Manon Bertin, Alain Couvreur, and Ayoub Otmani

Table 6. Experimental complexity of Gröbner basis computations with c = 8 special-
izations on U for DAGS1.1. The system after specialization contains “Var” remaining
variables. The column “Linear” (resp. “Bilinear”) gives the number of linear (resp.
bilinear) equations in the system. “False” contains the complexity of the Gröbner basis
computation for a wrong specialization, “True” for a correct one. The last column gives
the global complexity of the attack if we have to test all possible values of the variables
in Fq = F26 , that is 2

6×8× False + True.

dimSI (D) Var Linear Bilinear False True Total

2 43 25 25 235 236 283

3 51 25 50 235 236 283

4 59 25 75 238 239 286

5 67 25 100 240 240 288

Acknowledgements

This work has been supported by the French ANR projects MANTA (ANR-15-
CE39-0013) and CBCRYPT (ANR-17-CE39-0007). The authors are extremely
grateful to Élise Barelli for kindly giving her Magma code and for helpful dis-
cussions.

References

1. Banegas, G., Barreto, P., Odilon Boidje, B., Cayrel, P.L., Ndollane Dione, G.,
Gaj, K., Gueye, C.T., Haeussler, R., Klamti, J., Ndiaye, O., Tri Nguyen, D., Per-
sichetti, E., Ricardini, J.: DAGS: Key encapsulation using dyadic gs codes. Journal
of Mathematical Cryptology 12(4), 221–239 (09 2018)

2. Banegas, G., Barreto, P.S.L.M., Boidje, B.O., Cayrel, P.L., Dione, G.N., Gaj, K.,
Gueye, C.T., Haeussler, R., Klamti, J.B., Ndiaye, O., Nguyen, D.T., Persichetti,
E., Ricardini, J.E.: DAGS: Key encapsulation for dyadic GS codes, specifications
v2 (09 2018)

3. Banegas, G., Barreto, P.S., Boidje, B.O., Cayrel, P.L., Dione, G.N., Gaj, K.,
Gueye, C.T., Haeussler, R., Klamti, J.B., N’diaye, O., Nguyen, D.T., Per-
sichetti, E., Ricardini, J.E.: DAGS : Key encapsulation for dyadic GS codes.
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/DAGS.zip

(Nov 2017), first round submission to the NIST post-quantum cryptography call
4. Bardet, M., Faugère, J.C., Salvy, B.: On the complexity of gröbner basis compu-

tation of semi-regular overdetermined algebraic equations. In: ICPSS’04. pp. pp.
71–75. (2004), international Conference on Polynomial System Solving, November
24 - 25 - 26, Paris, France

5. Bardet, M., Faugère, J.C., Salvy, B., Yang, B.Y.: Asymptotic behaviour of the
degree of regularity of semi-regular quadratic polynomial systems. In: MEGA’05.
p. 15 p. (2005), eighth International Symposium on Effective Methods in Algebraic
Geometry, Porto Conte, Alghero, Sardinia (Italy), May 27th – June 1st

6. Bardet, M., Barelli, É., Blazy, O., Cando Torres, R., Couvreur, A., Gaborit, P.,
Otmani, A., Sendrier, N., Tillich, J.P.: BIGQUAKE. https://bigquake.inria.fr
(Nov 2017), NIST Round 1 submission for Post-Quantum Cryptography

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/DAGS.zip
https://bigquake.inria.fr

Practical Algebraic Attack on DAGS 15

7. Barelli, È.: On the security of some compact keys for McEliece scheme. In: WCC
Workshop on Coding and Cryptography (Sep 2017)

8. Barelli, É., Couvreur, A.: An efficient structural attack on NIST submission DAGS.
In: Peyrin, T., Galbraith, S. (eds.) Advances in Cryptology – ASIACRYPT 2018.
pp. 93–118. Springer International Publishing, Cham (2018)

9. Berger, T.P., Cayrel, P.L., Gaborit, P., Otmani, A.: Reducing key length of
the McEliece cryptosystem. In: Preneel, B. (ed.) Advances in Cryptology -
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 77–97. Gammarth, Tunisia (Jun 21-25
2009)

10. Bernstein, D.J., Chou, T., Lange, T., von Maurich, I., Niederhagen, R., Persichetti,
E., Peters, C., Schwabe, P., Sendrier, N., Szefer, J., Wen, W.: Classic McEliece:
conservative code-based cryptography (Nov 2017), first round submission to the
NIST post-quantum cryptography call

11. Bernstein, D.J., Lange, T., Peters, C.: Wild McEliece. In: Biryukov, A., Gong, G.,
Stinson, D.R. (eds.) Selected Areas in Cryptography. LNCS, vol. 6544, pp. 143–158
(2010)

12. Bettale, L., Faugère, J.C., Perret, L.: Hybrid approach for solving multivariate
systems over finite fields. Journal of Mathematical Cryptology 3(3), 177–197 (2009)

13. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: The user
language. J. Symbolic Comput. 24(3/4), 235–265 (1997)

14. Couvreur, A., Gaborit, P., Gauthier-Umaña, V., Otmani, A., Tillich, J.P.:
Distinguisher-based attacks on public-key cryptosystems using Reed-Solomon
codes. Des. Codes Cryptogr. 73(2), 641–666 (2014)

15. Couvreur, A., Otmani, A., Tillich, J.P.: Polynomial time attack on wild McEliece
over quadratic extensions. In: Nguyen, P.Q., Oswald, E. (eds.) Advances in Cryptol-
ogy - EUROCRYPT 2014. LNCS, vol. 8441, pp. 17–39. Springer Berlin Heidelberg
(2014)

16. Couvreur, A., Otmani, A., Tillich, J.P.: Polynomial time attack on wild McEliece
over quadratic extensions. IEEE Trans. Inform. Theory 63(1), 404–427 (Jan 2017)

17. Faugère, J.C., Otmani, A., Perret, L., de Portzamparc, F., Tillich, J.P.: Structural
weakness of compact variants of the McEliece cryptosystem. In: Proc. IEEE Int.
Symposium Inf. Theory - ISIT 2014. pp. 1717–1721. Honolulu, HI, USA (Jul 2014)

18. Faugère, J.C., Otmani, A., Perret, L., de Portzamparc, F., Tillich, J.P.: Folding
alternant and Goppa Codes with non-trivial automorphism groups. IEEE Trans.
Inform. Theory 62(1), 184–198 (2016)

19. Faugère, J.C., Otmani, A., Perret, L., de Portzamparc, F., Tillich, J.P.: Structural
cryptanalysis of McEliece schemes with compact keys. Des. Codes Cryptogr. 79(1),
87–112 (2016)

20. Faugère, J.C., Otmani, A., Perret, L., Tillich, J.P.: Algebraic cryptanalysis of
McEliece variants with compact keys. In: Advances in Cryptology - EURO-
CRYPT 2010. LNCS, vol. 6110, pp. 279–298 (2010)

21. Faugère, J.C., Perret, L., de Portzamparc, F.: Algebraic attack against variants of
McEliece with Goppa polynomial of a special form. In: Advances in Cryptology
- ASIACRYPT 2014. LNCS, vol. 8873, pp. 21–41. Springer, Kaoshiung, Taiwan,
R.O.C. (Dec 2014)

22. Faugère, J.C., Safey El Din, M., Spaenlehauer, P.J.: Gröbner bases of bihomoge-
neous ideals generated by polynomials of bidegree (1,1): Algorithms and complex-
ity. J. Symbolic Comput. 46(4), 406–437 (2011)

23. Gaborit, P.: Shorter keys for code based cryptography. In: Proceedings of the 2005
International Workshop on Coding and Cryptography (WCC 2005). pp. 81–91.
Bergen, Norway (Mar 2005)

16 Magali Bardet, Manon Bertin, Alain Couvreur, and Ayoub Otmani

24. Gauthier, V., Otmani, A., Tillich, J.P.: A distinguisher-based attack of a homomor-
phic encryption scheme relying on Reed-Solomon codes. CoRR abs/1203.6686
(2012)

25. Gauthier, V., Otmani, A., Tillich, J.P.: A distinguisher-based attack on a variant
of McEliece’s cryptosystem based on Reed-Solomon codes. CoRR abs/1204.6459
(2012)

26. McEliece, R.J.: A Public-Key System Based on Algebraic Coding Theory, pp. 114–
116. Jet Propulsion Lab (1978), dSN Progress Report 44

27. Misoczki, R., Barreto, P.: Compact McEliece keys from Goppa codes. In: Selected
Areas in Cryptography. Calgary, Canada (Aug 13-14 2009)

28. Otmani, A., Talé-Kalachi, H.: Square code attack on a modified Sidelnikov cryp-
tosystem. In: Hajji, S.E., Nitaj, A., Carlet, C., Souidi, E.M. (eds.) Codes, Cryptol-
ogy, and Information Security - First International Conference, C2SI 2015, Rabat,
Morocco, May 26-28, 2015, Proceedings - In Honor of Thierry Berger. Lecture
Notes in Computer Science, vol. 9084, pp. 173–183. Springer (2015)

29. Wieschebrink, C.: Cryptanalysis of the Niederreiter public key scheme based on
GRS subcodes. In: Post-Quantum Cryptography 2010. LNCS, vol. 6061, pp. 61–72.
Springer (2010)

	Practical Algebraic Attack on DAGS

