Debugging Quadrocopter Trajectories in
Mixed Reality

Burkhard Hoppenstedt!, Thomas Witte?, Jona Ruof?, Klaus Kammerer!,
Matthias Tichy?, Manfred Reichert!, and Riidiger Pryss’

! Institute of Databases and Information Systems, Ulm University, Ulm, Germany
2 Institute of Software Engineering and Programming Languages, Ulm University,
Ulm, Germany
burkhard.hoppenstedt@uni-ulm.de

Abstract. Debugging and monitoring robotic applications is a very in-
tricate and error-prone task. To this end, we propose a mixed-reality
approach to facilitate this process along a concrete scenario. We con-
nected the Microsoft HoloLens smart glass to the Robot Operating Sys-
tem (ROS), which is used to control robots, and visualize arbitrary flight
data of a quadrocopter. Hereby, we display holograms correctly in the
real world based on a conversion of the internal tracking coordinates
into coordinates provided by a motion capturing system. Moreover, we
describe the synchronization process of the internal tracking with the
motion capturing. Altogether, the combination of the HoloLens and the
external tracking system shows promising preliminary results. Moreover,
our approach can be extended to directly manipulate source code through
its mixed-reality visualization and offers new interaction methods to de-
bug and develop robotic applications.

Keywords: Quadrocopter - Mixed Reality - Robot Operating System -
3D Trajectories

1 Introduction

In recent years, quadrocopters became affordable for a wider audience and were
successfully used for commercial use cases, such as delivery ([7], [22]). The au-
tonomous operation of quadrocopters requires complex approaches, such as plan-
ning of flight paths [13], coordinated actions [20], or collision avoidance [10]. A
similar development took place in the field of augmented reality. Especially smart
glasses provide more features and offer a better interaction with the real world.
The development efforts for quadrocopter software are very high and we see po-
tential in utilizing augmented reality to assist the development of quadrocopter
software. Augmented reality has proven to be a suitable approach for complex
tasks, such as machine control [19]. In this work, we connected a quadrocopter
via the Robot Operating System (ROS) to a Microsoft HoloLens. In the smart
glass, we can see all the trajectories of the flight plan. Using the proposed frame-
work, it is possible to receive an instant 3D feedback for the programming of a
planned path and the method can be seen as visual 3D programming [12].

2 B. Hoppenstedt et al.

The remainder of this paper is structured as follows: Section 2 discusses re-
lated work, while Section 3 introduces the background for quadrocopters, Mixed
Reality, and the Robot Operating System. In Section 4, the developed prototype
is presented, in which the mixed-reality application and the processing pipeline
are presented. Threats to validity are presented in Section 5, whereas Section 6
concludes the paper with a summary and an outlook.

2 Related Work

Quadrocopters have been already tested in the context of Mixed Reality [14].
Hereby, the simplification of debugging, the elimination of safety risks, and the
easier development of swarm behavior by complementing physically existing
robots with simulated ones were named as outstanding advantages. Further-
more, a study for the programming of a small two-wheeled robot [16] revealed
no impact on the learning performance when using Augmented Reality (AR).
The debugging of quadrocopters with a fixed camera in combination with LEDs
is presented by [11]. In this approach, autonomously driving robots are operated
in a testing environment, and a camera stream is overlapped with AR data. Fi-
nally, the use of mobile LED projectors for easily understandable visualizations
of robot data is presented by [15]. However, the projection is limited to 2D data
and might be insufficent for complex flight paths of quadrocopters. However, to
the best of our knowledge, a combination of technologies as shown in this work,
has not been presented in other works so far.

3 Fundamentals

3.1 Robot Operating System

The Robot Operating System (ROS) [18] is a meta operating system designed for
the development of robot-specific applications. It is not classified as a standard
operating system, it is rather a collection of programs. ROS is basically designed
as a peer-to-peer architecture and supports the publish and subscribe pattern
(see Fig. 1). A central instance, denoted as master, provides a central lookup
directory and organizes the connections between different programs. The clients
of ROS are called nodes, and communicate by publishing messages in a YAML-
like [8] syntax. All messages are send to so-called topics, which can be seen as a
black board for messages. This concept allows the asynchronous transfer of large
amounts of data.

3.2 Mixed Reality

We used the Microsoft HoloLens to utilize mixed-reality concepts. Mixed reality,
in turn, is a concept in which the real environment and the virtual environment
are combined. Concerning the Virtuality Continuum [17], mixed reality has the
higher intersection of reality and virtuality. More specifically, the HoloLens uses

Debugging Quadrocopter Trajectories in Mixed Reality 3

1. subscribe
2. publish _ ~ T~
— =
3. receive

Fig. 1. Publish and Subscribe Principle of the Robot Operating System

spatial mapping to create a virtual model of the real environment. Therefore, in-
teractions of holograms and real-world objects become possible. Mixed Reality
is widely used in the contexts of industrial maintenance, medicine, and architec-
ture. The HoloLens is equipped with various sensors, such as a depth sensor, a
RGB Camera, and an ambient light sensor. Infinite projections are not possible,
neither to the distance nor to the proximity. With a weight of 579g, the HoloLens
may cause dizziness when used for a longer period of time. In an intensive use,
the battery lasts for about 2.5 hours, which inhibits a long-time usage.

3.3 Tracking

In our architecture, the HoloLens is tracked with a motion capturing system,
which uses an array of infrared emitting and receiving cameras. The HoloLens is
equipped with a set of three (at least) reflective markers (see Fig. 2, right side).
The markers are placed asymmetrically, since a symmetric marker placement
would yield an ambiguous tracking position. Furthermore, the HoloLens provides
its own tracking, which is relative to the starting pose. The motion capturing
system, in turn, provides an accuracy on millimeter level and is not susceptible to
drifts due to dead reckoning, which outperforms the internal HoloLens tracking
(see Fig. 2, left). After a calibration, the pose data is sent to the ROS as a virtual
reality peripheral network stream [23].

4 System Overview

Using a motion capturing system with 16 cameras, the system can detect, iden-
tify, and track objects with high precision. The motion capturing software then
makes this information available to the ROS through a continuous stream of pose
data. Inside the ROS network, the decentral and dynamic nature of ROS makes
it possible to connect components and other applications, such as the control
of a quadcopter swarm, in a flexible way. The motion data can, for example,
be processed to estimate the velocity and acceleration of objects, which is of
paramount importance for the motion planning and control of quadrocopters.
This amount of different data sources and objects might be complex to grasp or
understand, and is therefore often visualized using tools such as rviz [4]. We use
the same data format as common rviz marker messages to feed our mixed-reality
overlay. This enables to use the HoloLens as a plug and play replacement for rviz

4 B. Hoppenstedt et al.

= hololens tracking
N —

2 / — \— optitrack tracking
i (\)\ ir camera .‘
&

reflective marker

()
B bﬁqﬂ; 4

position.y [m]
4
w

e
N

z

L

\d
r

y
quadcopte)
z z
L -

X
v y
world \ /ololens_origin
Q

y
object detection) hololens
and tracking [] ROS > rosbridge

]

Fig. 3. Architecture of the system (left). Coordinate systems and transformations
(right).

and connect the 3D visualizations directly to the objects that provide the data.
The communication between the HoloLens and the ROS is realized through a
rosbridge [5]. The latter translates the TCPROS [6] message passing protocol to
a websocket-based protocol. The messages are then decoded using a HoloLens
rosbrige [1], interpreted, and eventually displayed on the HoloLens.

The HoloLens uses its own motion tracking [2], including internal cameras
and its Inertial Measurement Unit (IMU) to localize itself and keep the visual
overlay stable with respect to the environment. The reference frame of this inter-
nal tracking is not directly available to the ROS components of our system. We
can only observe the tracked position of the HoloLens itself (in the static world
frame of the motion capturing system) and communicate the internal (estimated)
position back to the ROS network (see Figure 3). Using these two coordinate

Debugging Quadrocopter Trajectories in Mixed Reality 5

transformations, we are able to calculate the position of arbitrary tracked objects
with respect to the internal HoloLens reference frame hololens_origin.

This setup is highly sensitive to timing. The transmission of data through
different hosts over a network as well as inside the ROS network introduces a
significant delay to the pose data that is used to transform the object positions
into the mixed-reality overlay. An additional delay is related to the tracking of
objects and the HoloLens itself. Figure 4 shows a time difference in the tracking
data, received from the HoloLens and the motion capturing system in ROS of at
least 0.1s. This results in a shifted or delayed positioning of the overlay, which
is especially visible during fast head turns or fast movements. We currently do
not estimate or compensate this delay as it would be necessary to synchronize
clocks across multiple systems. Instead, we update the HoloLens_origin frame
only sporadically during periods of low head movements. This way, the internal
tracking of the HoloLens can keep the overlay stable, and the positioning of the
overlay is corrected when timing is less critical.

o
o
T

= hololens tracking

— optitrack tracking

=)
0
T
N
/
/

=
T
/

yaw [radian]
o o
N W
T T
~
\ \\
N
N
/
s
f /'/
[/
|/
I/

°
o i
T T

/
/

©
2
T

©
o
T

o
w
T

| | | | | | |
9 9.5 <> 10 10.5 11 115 12
0.1s time [s]

Fig. 4. Time difference of the received pose data in ROS.

The system was tested in the quadrocopter lab at Ulm University. An area
of approximately 9.5 x 5.5 x 4 meters is used as the room for the quadrocopters
to operate and make maneuvers. The Optitrack [3] tracking system is installed
closely to the ceiling of the lab. The HoloLens has been made trackable with
markers, so that the motion capturing system can deliver a continuos stream
of pose information. This stream is sent to a computer in the lab, running an
instance of ROS. Finally, a ROS visualization is sent back to the HoloLens. This
message contains all the information about the current visualization. It further
includes lists of all objects with their location and required changes (e.g., modify,
delete, insert). The HoloLens parses this messages and transfers its content into

6 B. Hoppenstedt et al.

the internal object representation. The visualisation message can be seen as a
toolbox to build arbitrary complex scenes from the provided basic components
(see. Fig 5). A flight path can then be visualized using, e.g., a line strip or a
list of points, while arrows can be used to visualize the desired acceleration and
velocity vectors at a waypoint.

(a) Arrow (b) Cube (c) Sphere (d) Cylinder
(e) Line list (f) Line strip (g) Point list (h) Cube list
(i) Sphere list () Text

Fig. 5. Basic 3D Components

5 Threats to Validity

The following limitations of the presented approach need to be discussed. First,
the approach has not been tested in a study yet. Thus, it is unclear if users benefit
from the immersive representation of quadrocopter flight paths in terms of speed
or usability. Second, the approach relies heavily on a robust network connection,
therefore network problems will negatively influence the application behavior. In
general, network limitations might reduce the performance of animations and the
general application framerate. Third, the system is designed under laboratory
conditions and cannot be applied outside unless a marker-based environment is
established.

6 Summary and Outlook

We presented a prototype for visualizing data of a quadrocopter system (e.g.,
quadcopter trajectories) in Mixed Reality. The communication is realized using
the Robot Operating System. Different 3D objects serve as a toolkit to build

Debugging Quadrocopter Trajectories in Mixed Reality 7

visualizations in the context of quadrocopter flight plan programming. In a next
step, we will extend the approach from the monitoring to the interaction level.
Using the concept of source origin tracing, as used, e.g., by [9], it is possible
to directly manipulate constants in source code through the visualization. For
example, when using a tap gesture, the position of an object in the room could
be modified as well as the attached source code. Therefore, the user of the
application may program his or her quadrocopter through immersive interactions
with the displayed holograms. As the proposed approach contains novel user
interaction patterns, it should be evaluated in a usability study (cf. [21]) to
identify the mental load during its use. In this context, the speed advantage
compared to a traditional approach should be evaluated. Altogether, this work
has shown that the combination of the Robot Operating System and Mixed
Reality is a promising strategy.

References

1. HoloLens-Rosbridge. https://github.com/roastedpork/hololens-rosbridge,
accessed: 2019-02-13

2. HoloLens Tracking-System. https://docs.microsoft.com/en-us/windows/

mixed-reality/enthusiast-guide/tracking-system, accessed: 2019-02-13

Optitrack. http://optitrack.com, accessed: 2019-02-15

ROS Vizualization rviz. http://wiki.ros.org/rviz, accessed: 2019-02-13

ROSBridge. http://wiki.ros.org/rosbridge_suite, accessed: 2019-02-13

TCPROS. http://wiki.ros.org/ROS/TCPROS, accessed: 2019-02-15

Bamburry, D.: Drones: Designed for product delivery. Design Management Review

26(1), 40-48 (2015)

8. Ben-Kiki, O., Evans, C., Ingerson, B.: Yaml ain’t markup language (yaml) version
1.1. yaml. org, Tech. Rep p. 23 (2005)

9. Breckel, A., Tichy, M.: Live programming with code portals. In: Workshop on Live
Programming Systems - LIVE’16 (2016)

10. Gageik, N., Miiller, T., Montenegro, S.: Obstacle detection and collision avoid-
ance using ultrasonic distance sensors for an autonomous quadrocopter. University
of Wurzburg, Aerospace information Technologhy (germany) Wurzburg pp. 3-23
(2012)

11. Ghiringhelli, F., Guzzi, J., Di Caro, G.A., Caglioti, V., Gambardella, L.M., Giusti,
A.: Interactive augmented reality for understanding and analyzing multi-robot sys-
tems. In: Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ Interna-
tional Conference on. pp. 1195-1201. IEEE (2014)

12. Green, T.R.G., Petre, M., et al.: Usability analysis of visual programming envi-
ronments: A ’cognitive dimensions’ framework. Journal of visual languages and
computing 7(2), 131-174 (1996)

13. Hehn, M., DAndrea, R.: Quadrocopter trajectory generation and control. In: IFAC
world congress. vol. 18, pp. 1485-1491 (2011)

14. Hoenig, W., Milanes, C., Scaria, L., Phan, T., Bolas, M., Ayanian, N.: Mixed
reality for robotics. In: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ
International Conference on. pp. 5382-5387. IEEE (2015)

15. Leutert, F., Herrmann, C., Schilling, K.: A spatial augmented reality system for in-
tuitive display of robotic data. In: Proceedings of the 8th ACM /IEEE international
conference on Human-robot interaction. pp. 179-180. IEEE Press (2013)

N ootk w

8

16.

17.

18.

19.

20.

21.

22.

23.

B. Hoppenstedt et al.

Magnenat, S., Ben-Ari, M., Klinger, S., Sumner, R.W.: Enhancing robot program-
ming with visual feedback and augmented reality. In: Proceedings of the 2015
ACM Conference on Innovation and Technology in Computer Science Education.
pp. 153-158. ACM (2015)

Milgram, P., Takemura, H., Utsumi, A., Kishino, F.: Augmented reality: A class of
displays on the reality-virtuality continuum. In: Telemanipulator and telepresence
technologies. vol. 2351, pp. 282-293. International Society for Optics and Photonics
(1995)

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA workshop on
open source software. vol. 3, p. 5. Kobe, Japan (2009)

Ralston, S.E.: Augmented vision for survey work and machine control (Jul 25
2000), uS Patent 6,094,625

Ritz, R., Miller, M.W., Hehn, M., D’Andrea, R.: Cooperative quadrocopter ball
throwing and catching. In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on. pp. 4972-4978. IEEE (2012)

Schobel, J., Pryss, R., Probst, T., Schlee, W., Schickler, M., Reichert, M.: Learn-
ability of a configurator empowering end users to create mobile data collection
instruments: Usability study. JMIR mHealth and uHealth 6(6) (2018)

Stolaroff, J.: The need for a life cycle assessment of drone-based commercial package
delivery. Tech. rep., Lawrence Livermore National Lab.(LLNL), Livermore, CA
(United States) (2014)

Taylor II, R.M., Hudson, T.C., Seeger, A., Weber, H., Juliano, J., Helser, A.T.:
Vrpn: a device-independent, network-transparent vr peripheral system. In: Pro-
ceedings of the ACM symposium on Virtual reality software and technology. pp.
55-61. ACM (2001)

