Skip to main content

Usability of Direct Manipulation Interaction Methods for Augmented Reality Environments Using Smartphones and Smartglasses

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11614))

Abstract

This contribution presents a study examining five different interaction methods for manipulating objects in augmented reality (AR). Three of them were implemented on a smartglass (virtual buttons, swipe pad of a smartglass, remote control via the touchscreen of a smartwatch) and two of them on a smartphone (virtual buttons, touch interaction). 32 participants were asked to scale and rotate a virtual 3D object. We studied the usability of the interaction methods by measuring effectiveness, efficiency, and satisfaction of the users. The results of the study showed that smartphone interaction is superior to any of the studied smartglass interaction methods. Of the interaction methods implemented for the smartglass, the interaction via smartwatch shows the highest usability. Our findings suggest that smartwatches offer higher grades of usability when interacting with virtual objects rather than using the swipe pad of the smartglass or virtual buttons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Damala, A., Hornecker, E., van der Vaart, M., van Dijk, D., Ruthven, I.: The loupe: tangible augmented reality for learning to look at ancient Greek art. Mediterr. Archaeol. Archaeom. 16, 73–85 (2016). https://doi.org/10.5281/zenodo.204970

    Article  Google Scholar 

  2. Budhiraja, R., Lee, G.A., Billinghurst, M.: Using a HHD with a HMD for mobile AR interaction. In: 2013 IEEE International Symposium on Mixed and Augmented Reality, ISMAR 2013 (2013). https://doi.org/10.1109/ismar.2013.6671837

  3. Laviola, J.J.: The influence of head tracking and stereo on user performance with non-isomorphic 3D rotation. In: 14th Eurographics Symposium on Virtual Environments, Virtual Environments 2008, pp. 111–118 (2008). https://doi.org/10.2312/EGVE/EGVE08/111-118

  4. Hürst, W., Van Wezel, C.: Gesture-based interaction via finger tracking for mobile augmented reality. Multimed. Tools Appl. 62, 233–258 (2013). https://doi.org/10.1007/s11042-011-0983-y

    Article  Google Scholar 

  5. Lee, G.A., Billinghurst, M., Kim, G.J.: Occlusion based interaction methods for tangible augmented reality environments. In: Proceedings of the 2004 ACM SIGGRAPH International Conference on Virtual Reality Continuum and Its Applications in Industry, pp. 419–426. ACM, New York (2004)

    Google Scholar 

  6. Wenig, D., Schöning, J., Olwal, A., Oben, M., Malaka, R.: WatchThru: expanding smartwatch displays with mid-air visuals and wrist-worn augmented reality. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 716–721 (2017). https://doi.org/10.1145/3025453.3025852

  7. Serrano, M., Hasan, K., Ens, B., Yang, X., Irani, P.: Smartwatches + Head-Worn Displays: the ‘New’ Smartphone. Mobile Collocated Interactions: From Smartphones to Wearables (2015)

    Google Scholar 

  8. Ohlei, A., Bouck-Standen, D., Winkler, T., Herczeg, M.: InfoGrid: an approach for curators to digitally enrich their exhibitions. In: Mensch und Computer 2018 - Workshopband (2018)

    Google Scholar 

  9. Ohlei, A., Bouck-Standen, D., Winkler, T., Herczeg, M.: InfoGrid: acceptance and usability of augmented reality for mobiles in real museum context. In: Mensch und Computer 2018 - Workshopband (2018)

    Google Scholar 

  10. Winkler, T., Scharf, F., Hahn, C., Herczeg, M.: Ambient learning spaces. In: Education in a Technological World: Communicating Current and Emerging Research and Technological Efforts, pp. 56–67 (2011)

    Google Scholar 

  11. Bouck-Standen, D., Ohlei, A., Winkler, T., Herczeg, M.: An approach to auto-enhance semantic 3D media for ambient learning spaces. In: Kropf, J., Berntzen, L. (eds.) AMBIENT 2018 - The Eight International Conference on Ambient Computing, Applications, Services and Technologies. IARIA, Athens, Greece (2018)

    Google Scholar 

  12. unity3d.com. https://unity3d.com/de

  13. www.vuforia.com, https://www.vuforia.com/

  14. Brooke, J.: SUS-A quick and dirty usability scale. In: Usability Evaluation in Industry. CRC Press (1996)

    Google Scholar 

  15. Finstad, K.: The usability metric for user experience. Interact. Comput. 22, 323–327 (2010). https://doi.org/10.1016/j.intcom.2010.04.004

    Article  Google Scholar 

  16. Santos, M.E.C., Polvi, J., Taketomi, T., Yamamoto, G., Sandor, C., Kato, H.: Toward standard usability questionnaires for handheld augmented reality. IEEE Comput. Graph. Appl. 35, 66–75 (2015). https://doi.org/10.1109/MCG.2015.94

    Article  Google Scholar 

  17. Bai, H., Lee, G.A., Billinghurst, M.: Freeze view touch and finger gesture based interaction methods for handheld augmented reality interfaces, p. 126 (2013). https://doi.org/10.1145/2425836.2425864

  18. Yang, Z., Weng, D.: Passive haptics based MR system for geography teaching, pp. 23–29 (2016). https://doi.org/10.1145/3013971.3013995

  19. D’Agostino, R.B.: Goodness-of-Fit-Techniques. Taylor & Francis (1986)

    Google Scholar 

  20. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32, 675–701 (1937). https://doi.org/10.1080/01621459.1937.10503522

    Article  MATH  Google Scholar 

  21. Dunn, O.J.: Multiple comparisons among means. J. Am. Stat. Assoc. 56, 52–64 (1961). https://doi.org/10.1080/01621459.1961.10482090

    Article  MathSciNet  MATH  Google Scholar 

  22. Zar, J.H.: Significance testing of the spearman rank correlation coefficient. J. Am. Stat. Assoc. 67, 578–580 (1972). https://doi.org/10.1080/01621459.1972.10481251

    Article  MATH  Google Scholar 

  23. Cohen, J.: A power primer. Psychol. Bull. 112, 155–159 (1992). https://doi.org/10.1037/0033-2909.112.1.155

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander Ohlei , Daniel Wessel or Michael Herczeg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ohlei, A., Wessel, D., Herczeg, M. (2019). Usability of Direct Manipulation Interaction Methods for Augmented Reality Environments Using Smartphones and Smartglasses. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2019. Lecture Notes in Computer Science(), vol 11614. Springer, Cham. https://doi.org/10.1007/978-3-030-25999-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25999-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25998-3

  • Online ISBN: 978-3-030-25999-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics