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Abstract. For most languages in the world and for speech that deviates from
the standard pronunciation, not enough (annotated) speech data is available to
train an automatic speech recognition (ASR) system. Moreover, human inter-
vention is needed to adapt an ASR system to a new language or type of speech.
Human listeners, on the other hand, are able to quickly adapt to nonstandard
speech and can learn the sound categories of a new language without having
been explicitly taught to do so. In this paper, I will present comparisons between
human speech processing and deep neural network (DNN)-based ASR and will
argue that the cross-fertilisation of the two research fields can provide valuable
information for the development of ASR systems that can flexibly adapt to any
type of speech in any language. Specifically, I present results of several
experiments carried out on both human listeners and DNN-based ASR systems
on the representation of speech and lexically-guided perceptual learning, i.e., the
ability to adapt a sound category on the basis of new incoming information
resulting in improved processing of subsequent speech. The results showed that
DNNs appear to learn structures that humans use to process speech without
being explicitly trained to do so, and that, similar to humans, DNN systems learn
speaker-adapted phone category boundaries from a few labelled examples.
These results are the first steps towards building human-speech processing
inspired ASR systems that, similar to human listeners, can adjust flexibly and
fast to all kinds of new speech.

Keywords: Speech representations � Adaptation � Non-standard speech �
Deep neural networks � Human speech processing � Perceptual learning

1 Introduction

Automatic speech recognition (ASR) is the mapping of a continuous, highly variable
speech signal onto discrete, abstract representations, typically phonemes or words.
ASR works well in relatively restricted settings (e.g., speech without strong accents,
quiet background) but tends to break down when the speech that needs to be recognised
diverges from ‘normal’ speech, e.g., because of speech impediments or accents, or
when no or only limited annotated training data is available for the type of speech or
language for which the system is build (i.e., low-resource languages). In fact, for only
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about 1% of the world languages the minimum amount of training data that is needed to
develop ASR technology is available [1]. This means that ASR technology is not
available to all people in the world, including those people who would profit the most
from it, i.e., people with disabilities or people whose native language does not have a
common written form, because of which they need to rely on speech technology to
communicate with people and/or computers. The Linguistic Rights as included in the
Universal Declaration of Human Rights states that it is a human right to communicate
in one’s native language. This situation is obviously not yet reached.

Most ASR systems are phoneme-based systems which are based on the principle
that a word is composed of a sequence of speech sounds called phonemes, and acoustic
representations (i.e., acoustic models) are trained for context-dependent versions of
each phoneme. In order to make ASR available for all types of speech in all the world’s
languages, simply recording and annotating enough speech material for training a
phoneme-based ASR system is infeasible. First, because it is impossible to collect for
every type of speech in every language of the world the hundreds of hours of speech
with their textual transcriptions that are needed to train a system that works reasonably
well. Second, because it is impossible for languages that do not have a common writing
system. An obvious solution is to map an ASR system trained on a language and type
of speech for which there is enough training data (e.g., English spoken by native
speaker without a clear accent or speech impediment) to a language or type of speech
for which there is little or no data [2–6]. This mapping of an ASR system from one type
of speech or language to another requires explicit decisions by a human about which
phoneme categories, or rather acoustic models, will need to be adapted or created in the
ASR system.

In order to build ASR systems that can flexibly adapt to any type of speech in any
language, we need: (1) invariant units of speech which transfer easily and accurately to
other languages and different types of speech and lead to the best ASR recognition
performance; (2) an ASR system that can flexibly adapt to new types of speech; (3) an
ASR system that can decide when to create a new phoneme category, and do so.

Human listeners have been found to do exactly that. They are able to quickly adapt
their phoneme categories on the basis of only a few examples to deviant speech,
whether due to a speech impediment or an accent, using a process called lexically-
guided perceptual learning [7]. Moreover, human listeners have been found to create
new phoneme categories, e.g., when learning a new language [8].

So ideally, the search for invariant speech units and flexible adaptation processes in
ASR are based on the speech representations and speech recognition processes in
human speech processing as the best speech recogniser is a human who is a native
speaker of the language [9]. Moreover, despite the differences in hardware between a
human listener and an ASR system, they both carry out the same process: the recog-
nition of speech [10]. There is ample evidence that knowledge about human speech
processing has powerful potential for improving ASR ([9–14], for a review [15]). For
instance, knowledge about human speech processing and human hearing has been used
in the development of Mel-frequency cepstral coefficients (MFCCs, [16]) and Per-
ceptual Linear Predictives (PLPs, [14]), while the episodic theory of human speech
processing was the inspiration to the development of template-based approaches to
ASR (e.g., [17]).

2 O. Scharenborg



In this paper, I focus on the first two requisites for building an ASR system that can
flexibly adapt to any type of speech in any language by comparing human speech
processing and deep neural network (DNN)-based ASR. I will summarise experiments
which compare the representation of speech and adaptation processes in the human
brain and DNNs, with the ultimate aim to build human speech processing inspired ASR
systems that can flexibly adapt to any speech style in any language, i.e., the third
requisite. Recent advances in deep learning make DNNs currently the best-performing
ASR systems [18]. DNNs are inspired by the human brain, which is often suggested to
be the reason for their impressive abilities, e.g., [19]. Although both the human brain
and DNNs consist of neurons and neural connections, little is known about whether
DNNs actually use similar representations for speech and solve the task of speech
recognition in the same way the human brain does.

2 Speech Representations

When learning one’s first language, human listeners learn to associate certain acoustic
variability with certain phonological categories. The question I am interested in is
whether a DNN also learns phonological categories similar to those used by human
listeners. Using the visual example in Fig. 1 as an example: if a DNN is able to
distinguish between a plane in a blue sky and a chair on a green lawn, has the DNN
learned to distinguish the blue background from the green background or has it learned
features that are associated with planes and features that are associated with chairs to
distinguish the two objects as a human would do to distinguish these two objects in
these pictures?

The question what speech representations a DNN learns during speech processing
was investigated using a naïve, general feed-forward DNN which was trained on the
task of vowel/consonant classification [20]. Vowel/consonant classification is a rela-
tively simple, well-understood task, which allows us to investigate what a naïve,
general DNN exactly learns when faced with the large variability of the speech sounds
in the speech signal. Crucially, the speech representations in the different hidden layers
of the DNN were investigated by visualising the activations of the speech represen-
tations in those hidden layers using different linguistic labels that are known to cor-
respond to the underlying structures that human listeners use to process and understand
speech.

Fig. 1. What features does a DNN use to distinguish between the plane in the blue sky on the
left and the chair on the green lawn?

The Representation of Speech and Its Processing in the Human Brain and DNNs 3



The DNN consisted of 3 hidden layers with 1024 nodes each, and was trained on
64 h of read speech from the Corpus Spoken Dutch (CGN; [21]). Accuracy on the
vowel/consonant classification task, averaged over five runs, was 85.5% (consonants:
85.2%; vowels: 86.7% correct). Subsequently, the input frames were labelled with:

• Phoneme labels: 39 in total.
• Manner of articulation: indicates the type of constriction in the vocal tract. For

consonants, four categories were distinguished: plosive, fricative, nasal, approxi-
mant. For vowels, three categories were distinguished: short vowel, long vowel,
diphthong.

• Place of articulation: indicates the location of the constriction in the vocal tract. For
consonants, six categories were distinguished: bilabial, labiodental, velar, alveolar,
palatal, glottal. For vowels, three tongue position categories were distinguished:
front, central, back.

The clusters of speech representations at the different hidden layers were visualised
using t-distributed neighbor embedding (t-SNE, [22]). The first visualisation investi-
gated the clusters of consonants and vowels in the different hidden layers. The results
showed that from earlier to later hidden layers, the vowel and consonant clusters
become more compact and more separate, showing that the DNN is learning to create
speech representations that are increasingly abstract.

In the second series of visualisations, the input frames were first labelled with the
phoneme labels. This visualisation showed that the phoneme labels were not randomly
distributed over the hidden layers. Rather, despite that the DNN was trained on a
vowel/consonant classification task, the DNN implicitly learned to cluster frames with
the same phoneme label to some extent. Subsequent analyses with labelling of the
frames in terms of manner of articulation and place of articulation showed that the
DNN learned to cluster sounds together that are produced in similar ways such that
consonants with a similar manner of articulation and vowels with a similar place of
articulation are clustered into clearly defined groups. The DNN thus appeared to learn
structures that human listeners use to process speech without having been explicitly
trained to do so.

3 Adaptation to Non-standard Speech

Adaptation to nonstandard speech is often referred to as ‘perceptual learning’ in the
human speech processing literature. Perceptual learning is defined as the temporary or
more permanent adaptation of sound categories after exposure to nonstandard speech
such that the nonstandard sound is included into a pre-existing sound category, which
leads to an improvement in the intelligibility of the speech (see for a review [23]).
Perceptual learning is fast. Human listeners need only a few instances of the deviant
sounds [24, 25] to adapt their sound category boundaries to include the nonstandard
sound [7, 23–28]. ASR systems adapt to new speakers and listening conditions using
both short-time adaptation algorithms (e.g., fMLLR [29]) and longer-term adaptation
techniques (e.g., DNN weight training [30]). For both human listeners and ASR
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systems, lexical knowledge about the word in which the nonstandard sound occurs is
crucial to correctly interpret the nonstandard sound [7, 23].

3.1 Does a DNN Show Human-Like Adaptation to Nonstandard Speech?

In recent work, we investigated the question whether DNNs are able to adapt to
nonstandard speech as rapidly as human listeners, and whether DNNs use intermediate
speech representations that correlate with those used in human perceptual learning [12].
Mimicking the set-up of a human lexically-guided perceptual learning study [28],
which allows for the direct comparison between human listening behaviour and the
behaviour of the DNN, we trained a feed-forward DNN on the read speech of CGN.
The trained model was regarded as a ‘native Dutch listener’. In the next step, the DNN
was retrained with the acoustic stimuli from the original human perceptual learning
study [28], i.e., speech from a new speaker who had an (artificially created) nonstan-
dard pronunciation of a sound in between [l] and [ɹ], referred to as [l/ɹ]: One model was
trained with the [l/ɹ] sound always occurring in /r/-final words; another model was
trained with the [l/ɹ] sound always occurring in /l/-final words. A final, baseline model
was trained on the same words but without nonstandard pronunciations.

The results showed that the DNNs retrained with the [l/ɹ] sounds indeed showed
perceptual learning: The baseline model classified the nonstandard sound during a
subsequent phase as both [l] and [ɹ], the model retrained with the [l/ɹ] sound in /r/-final
words classified the sound as [ɹ] while the model retrained with the nonstandard sound
in /l/-final words classified the sound as [l]. This difference between the two models
trained with the nonstandard pronunciation is called the perceptual learning effect.
Moreover, this perceptual learning effect did not only occur at the output level, but
calculations of the distances between the average activations of the nonstandard sound
and those of the natural sounds and the visualisations of the activations of the hidden
layers showed that perceptual learning also occurred at the DNN’s intermediate levels.
Interestingly, the visualisations of the speech representations in the DNN’s hidden
layers showed that the phonetic space was warped to accommodate the nonstandard
speech. This warping of the phonetic space seems to be at odds with theories of human
speech processing, which assumes that the nonstandard sound is incorporated in the
existing phoneme category by redrawing the phoneme category boundaries [26]. In
follow-up research, I plan to test this prediction of the DNN about human speech
processing in new human perceptual experiments.

3.2 Are Nonstandard Sounds Processed Similarly in Human Listeners
and DNNs?

In subsequent work, this research was pushed further and we asked the questions
whether nonstandard sounds are processed in the same way as natural sounds; and, how
many examples of the nonstandard sound are needed before the DNN adapts? Again,
the experimental design [24] and acoustic stimuli were taken from earlier research on
lexically-guided perceptual learning in human listeners [28]. The same DNN as in the
study described in Sect. 3.1, was retrained but this time using increasing amounts of
nonstandard sounds (in 10 bins of 4 ambiguous items). Calculations of the distances
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between the average activations of the nonstandard sound and those of the natural
sounds in the different hidden layers showed that the DNN showed perceptual learning
after only four examples of the nonstandard sound, and little further adaptation for
subsequent training examples.

Interestingly, human listeners have been found to show a similar type of step-like
function after about 10–15 examples of the nonstandard sound. The difference in
number of examples could be explained by the fact that the DNN sees each training
example 30 times (30 epochs) whereas the human listener hears each token only once.
In follow-up research, I plan to further investigate the step-like function in adaptation in
human listening.

4 Concluding Remarks

In this paper, I summarised results from three studies comparing human speech pro-
cessing and speech processing in deep neural networks. The results showed that:

• Similar to human listeners, the DNN progressively abstracted away variability in the
speech signal in subsequent hidden layers;

• Without being explicitly trained to do so, the DNN captured the structure in speech
by clustering the speech signal into linguistically-defined speech category repre-
sentations, similar to those used during human speech processing;

• Similar to human listeners, the DNN adapted to nonstandard speech on the basis of
only a few labelled examples by warping the phoneme space;

• This adaptation did not only occur in the output layer but instead occurred in the
hidden layers of the DNN and showed a step-like function.

These detailed comparisons between human speech processing and DNN-based
ASR highlight clear similarities between the speech representations and their pro-
cessing in the human brain and in DNN-based ASR systems. Moreover, the DNNs
made specific predictions about adaptation to nonstandard speech that will be inves-
tigated in experiments on human speech processing to further investigate the differ-
ences and similarities between adaptation to nonstandard speech in humans and DNN-
based ASR systems. These experiments will lead to important new insights regarding
the adaptation of human listeners to nonstandard speech.

Past research [9–17] has shown that knowledge of human speech processing can be
used to improve ASRs. The observed similarities between human and DNN speech
processing suggest that integrating the flexibility of the human adaptation processes
into DNN-based ASRs is likely to lead to improved adaptation of DNN-based ASRs to
nonstandard speech. Crucial for the development of human-speech processing inspired
ASR systems that, similar to human listeners, can adjust flexibly and fast to all types of
speech in all languages is understanding when and how human listeners decide to
create a new phoneme category rather than adapting an existing phoneme category to
include a nonstandard pronunciation. This is a crucial next step in this research.

Acknowledgments. I would like to thank Junrui Ni for carrying out the experiments described
in Sect. 3.2 and Mark Hasegawa-Johnson for fruitful discussions on the experiments in Sect. 3.2.
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