Skip to main content

DCEGen: Dense Clutter Environment Generation Tool for Autonomous 3D Exploration and Coverage Algorithms Testing

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2019)

Abstract

Autonomous exploration and coverage in 3D environments recently has became a rapidly developing research field. Emerging 3D reconstruction methods, designed specifically for exploration and coverage, allows capturing an environment in a greater details. However, not much work addresses certain difficulties inherent to dense clutter environments. We observed those difficulties and made an attempt that seeks to expand the applicability of such methods to more demanding scenarios. Automating the process of testing and evaluation by designing a dense clutter environment generation algorithm (DCEGen) allows us to measure comparative performance of available algorithms. We focus on path-planning algorithms used in an unmanned ground vehicles. The algorithm was implemented and verified using Gazebo simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://gitlab.com/LIRS_Projects/Simulation-3d-reconstruction/tree/master/autonomous_exploration_and_coverage. Note for reviewers: The access will be opened after the conference if the paper is accepted.

References

  1. Blender: Free and open source 3d creation. https://www.blender.org/

  2. Adán, A., Quintana, B., Vázquez, A.S., Olivares, A., Parra, E., Prieto, S.: Towards the automatic scanning of indoors with robots. Sensors (Basel) 15(5), 11551–11574 (2015)

    Article  Google Scholar 

  3. Afanasyev, I., Sagitov, A., Magid, E.: ROS-based SLAM for a Gazebo-simulated mobile robot in image-based 3D model of indoor environment. In: Battiato, S., Blanc-Talon, J., Gallo, G., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2015. LNCS, vol. 9386, pp. 273–283. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25903-1_24

    Chapter  Google Scholar 

  4. Andreychuk, A., Yakovlev, K.: Path finding for the coalition of co-operative agents acting in the environment with destructible obstacles. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2018. LNCS (LNAI), vol. 11097, pp. 13–22. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99582-3_2

    Chapter  Google Scholar 

  5. Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., Siegwart, R.: Receding horizon “next-best-view” planner for 3D exploration. In: IEEE International Conference on Robotics and Automation (ICRA) (2016)

    Google Scholar 

  6. Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., Siegwart, R.: Receding horizon path planning for 3D exploration and surface inspection. Auton. Robot. 42(2), 291–306 (2018)

    Article  Google Scholar 

  7. Dang, T., Parachristos, C., Alexis, K.: Visual saliency-aware receding horizon autonomous exploration with application to aerial robotics. In: IEEE International Conference on Robotics and Automation (ICRA) (2018)

    Google Scholar 

  8. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: IEEE European Conference on Computer Vision (ECCV), pp. 834–849 (2014)

    Chapter  Google Scholar 

  9. Galceran, E., Carreras, M.: A survey on coverage path planning for robotics. Robot. Auton. Syst. 61(12), 1258–1276 (2013)

    Article  Google Scholar 

  10. González-Banos, H.H., Latombe, J.C.: Navigation strategies for exploring indoor environments. Int. J. Robot. Res. 21(10–11), 829–848 (2002)

    Article  Google Scholar 

  11. Heng, L., Gotovos, A., Krause, A., Pollefeys, M.: Efficient visual exploration and coverage with a micro aerial vehicle in unknown environments. In: IEEE International Conference on Robotics and Automation (ICRA) (2015)

    Google Scholar 

  12. Hornung, A.: Octomap\(\_\)mapping ros package. wiki.ros.org/octomap_mapping/

  13. LaValle, S.M.: Rapidly-exploring random trees a new tool for path planning. Technical report (1998)

    Google Scholar 

  14. Lavrenov, R., Matsuno, F., Magid, E.: Modified spline-based navigation: guaranteed safety for obstacle avoidance. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2017. LNCS (LNAI), vol. 10459, pp. 123–133. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66471-2_14

    Chapter  Google Scholar 

  15. Lavrenov, R., Zakiev, A.: Tool for 3D Gazebo map construction from arbitrary images and laser scans. In: 2017 10th International Conference on Developments in eSystems Engineering (DeSE), pp. 256–261. IEEE (2017)

    Google Scholar 

  16. Magid, E., Tsubouchi, T., Koyanagi, E., Yoshida, T.: Static balance for rescue robot navigation: losing balance on purpose within random step environment. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 349–356. IEEE (2010)

    Google Scholar 

  17. Mendez, O., Hadfield, S., Pugeault, N., Bowden, R.: Taking the scenic route to 3D: optimising reconstruction from moving cameras. In: IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  18. Meng, Z., Qin, H., Chen, Z., Chen, X., Sun, H., Lin, F., Ang Jr., M.H.: A 2-stage optimized next view planning framework for 3-d unknown environment exploration and structural reconstruction. IEEE Robot. Autom. Lett. 2(3), p1680–1687 (2017)

    Article  Google Scholar 

  19. Panov, A.I., Yakovlev, K.: Behavior and path planning for the coalition of cognitive robots in smart relocation tasks. In: Kim, J.-H., Karray, F., Jo, J., Sincak, P., Myung, H. (eds.) Robot Intelligence Technology and Applications 4. AISC, vol. 447, pp. 3–20. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-31293-4_1

    Chapter  Google Scholar 

  20. Rodríguez-Teiles, F.G., Pérez-Alcocer, R., Maldonado-Ramírez, A., Torres-Méndez, L.A., Dey, B.B., Martínez-García, E.A.: Vision-based reactive autonomous navigation with obstacle avoidance: towards a non-invasive and cautious exploration of marine habitat. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 3813–3818. IEEE (2014)

    Google Scholar 

  21. Ronzhin, A., Saveliev, A., Basov, O., Solyonyj, S.: Conceptual model of cyberphysical environment based on collaborative work of distributed means and mobile robots. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2016. LNCS (LNAI), vol. 9812, pp. 32–39. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43955-6_5

    Chapter  Google Scholar 

  22. Senarathne, P.G.C.N., Wang, D.: Towards autonomous 3D exploration using surface frontiers. In: IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR) (2016)

    Google Scholar 

  23. Shabat, Y.B., Fischer, A.: Design of adaptive porous micro-structures using curvature analysis for additive manufacturing. In: the 25th CIRP Design conference, Haifa, Israel (2015)

    Google Scholar 

  24. Shimchik, I., Sagitov, A., Afanasyev, I., Matsuno, F., Magid, E.: Golf cart prototype development and navigation simulation using ROS and Gazebo. In: MATEC Web of Conferences, vol. 75. EDP Sciences (2016)

    Google Scholar 

  25. Weise, T., Leibe, B., Van Gool, L.: Fast 3D scanning with automatic motion compensation. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

    Google Scholar 

  26. Yakovlev, K., Khithov, V., Loginov, M., Petrov, A.: Distributed control and navigation system for quadrotor UAVs in GPS-denied environments. In: Filev, D., Jabłkowski, J., Kacprzyk, J., Krawczak, M., Popchev, I., Rutkowski, L., Sgurev, V., Sotirova, E., Szynkarczyk, P., Zadrozny, S. (eds.) Intelligent Systems 2014. AISC, vol. 323, pp. 49–56. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-11310-4_5

    Chapter  Google Scholar 

  27. Yang, M.D., Chao, C.F., Huang, K.S., Lu, L.Y., Chen, Y.P.: Image-based 3D scene reconstruction and exploration in augmented reality. Autom. Constr. 33, 48–60 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (RFBR), project ID 19-58-70002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Lavrenov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Denisov, E., Sagitov, A., Lavrenov, R., Su, KL., Svinin, M., Magid, E. (2019). DCEGen: Dense Clutter Environment Generation Tool for Autonomous 3D Exploration and Coverage Algorithms Testing. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2019. Lecture Notes in Computer Science(), vol 11659. Springer, Cham. https://doi.org/10.1007/978-3-030-26118-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26118-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26117-7

  • Online ISBN: 978-3-030-26118-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics