Skip to main content

Protein Complexes Detection Based on Deep Neural Network

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11607))

Abstract

Protein complexes play an important role for scientists to explore the secrets of cell and life. Most of the existing protein complexes detection methods utilize traditional clustering algorithms on protein-protein interaction (PPI) networks. However, due to the complexity of the network structure, traditional clustering methods cannot capture the network information effectively. Therefore, how to extract information from high-dimensional networks has become a challenge. In this paper, we propose a novel protein complexes detection method called DANE, which uses a deep neural network to maintain the primary information. Furthermore, we use a deep autoencoder framework to implement the embedding process, which preserves the network structure and the additional biological information. Then, we use the clustering method based on the core-attachment principle to get the prediction result. The experiments on six yeast datasets with five other detection methods show that our method gets better performance.

This work was supported by National Science Foundation of China (No. 61632019; No. 61876028) and Foundation of Department of Education of Liaoning Province (No. L2015001).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bader, G.D., Hogue, C.W.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 4(1), 2 (2003)

    Article  Google Scholar 

  2. Collins, S.R., et al.: Toward a comprehensive atlas of the physical interactome of saccharomyces cerevisiae. Mol. Cell. Proteomics (MCP) 6(3), 439 (2007)

    Article  Google Scholar 

  3. Gene Ontology Consortium: The Gene Ontology (GO) project in 2006. Nucleic Acids Res 34(Suppl. 1), D322–D326 (2006)

    Google Scholar 

  4. Gavin, A.C., et al.: Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084), 631 (2006)

    Article  Google Scholar 

  5. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864. ACM (2016)

    Google Scholar 

  6. Hamp, T., Rost, B.: Evolutionary profiles improve protein-protein interaction prediction from sequence. Bioinformatics 31(12), 1945–1950 (2015)

    Article  Google Scholar 

  7. Krogan, N.J., et al.: Global landscape of protein complexes in the yeast saccharomyces cerevisiae. Nature 440(7084), 637 (2006)

    Article  Google Scholar 

  8. Li, M., Chen, J.E., Wang, J.X., Hu, B., Chen, G.: Modifying the DPClus algorithm for identifying protein complexes based on new topological structures. BMC Bioinform. 9(1), 398 (2008)

    Article  Google Scholar 

  9. Li, T., et al.: A scored human protein-protein interaction network to catalyze genomic interpretation. Nat. Methods 14(1), 61 (2017)

    Article  Google Scholar 

  10. Li, X.L., Foo, C.S., Ng, S.K.: Discovering protein complexes in dense reliable neighborhoods of protein interaction networks. Comput. Syst. Bioinform. 6, 157–168 (2007)

    Article  Google Scholar 

  11. Liu, G., Wong, L., Chua, H.N.: Complex discovery from weighted PPI networks. Bioinformatics 25(15), 1891–1897 (2009)

    Article  Google Scholar 

  12. Nepusz, T., Yu, H., Paccanaro, A.: Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods 9(5), 471 (2012)

    Article  Google Scholar 

  13. Ozawa, Y., et al.: Protein complex prediction via verifying and reconstructing the topology of domain-domain interactions. BMC Bioinform. 11(1), 350 (2010)

    Article  Google Scholar 

  14. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)

    Google Scholar 

  15. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  16. Salakhutdinov, R., Hinton, G.: Semantic hashing. Int. J. Approx. Reason. 50(7), 969–978 (2009)

    Article  Google Scholar 

  17. Srihari, S., Leong, H.W.: A survey of computational methods for protein complex prediction from protein interaction networks. J. Bioinform. Comput. Biol. 11(02), 1230002 (2013)

    Article  Google Scholar 

  18. Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34(Suppl. 1), D535–D539 (2006)

    Article  Google Scholar 

  19. Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for generating all maximal cliques and computational experiments. Theoret. Comput. Sci. 363(1), 28–42 (2006)

    Article  MathSciNet  Google Scholar 

  20. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1225–1234. ACM (2016)

    Google Scholar 

  21. Wang, J., Li, M., Deng, Y., Pan, Y.: Recent advances in clustering methods for protein interaction networks. BMC Genom. 11(3), S10 (2010)

    Google Scholar 

  22. Wu, M., Li, X., Kwoh, C.K., Ng, S.K.: A core-attachment based method to detect protein complexes in PPI networks. BMC Bioinform. 10(1), 169 (2009)

    Article  Google Scholar 

  23. Xenarios, I., Salwinski, L., Duan, X.J., Higney, P., Kim, S.M., Eisenberg, D.: DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 30(1), 303–305 (2002)

    Article  Google Scholar 

  24. Zaki, N., Efimov, D., Berengueres, J.: Protein complex detection using interaction reliability assessment and weighted clustering coefficient. BMC Bioinform. 14(1), 163 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peixu Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Gao, P., Sun, M., Zong, L., Xu, B. (2019). Protein Complexes Detection Based on Deep Neural Network. In: U., L., Lauw, H. (eds) Trends and Applications in Knowledge Discovery and Data Mining. PAKDD 2019. Lecture Notes in Computer Science(), vol 11607. Springer, Cham. https://doi.org/10.1007/978-3-030-26142-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26142-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26141-2

  • Online ISBN: 978-3-030-26142-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics