Skip to main content

Spike Sorting with Locally Weighted Co-association Matrix-Based Spectral Clustering

  • Conference paper
  • First Online:
Trends and Applications in Knowledge Discovery and Data Mining (PAKDD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11607))

Included in the following conference series:

  • 802 Accesses

Abstract

Spike sorting for neuron recordings is one of the core tasks in brain function studies. Spike sorting always consists of spike detection, feature extraction and clustering. Most of the clustering algorithms adopted in spike sorting schemes are subject to the shapes and structures of the signal except the spectral clustering algorithm. To improve the performance of spectral clustering algorithm for spike sorting, in this paper, a locally weighted co-association matrix is employed as the similarity matrix and the Shannon entropy is also introduced to measure the dependability of clustering. Experimental results show that the performance of spike sorting with the improved spectral clustering algorithm is superior to that of spike sorting with other classic clustering algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Quian Quiroga, R.: Spike sorting. Curr. Biol. 22(2), R45 (2012)

    Article  Google Scholar 

  2. Takahashi, S., Anzai, Y., Sakurai, Y.: Automatic sorting for multi-neuronal activity recorded with tetrodes in the presence of overlapping spikes. J. Neurophysiol. 89(4), 2245–2258 (2003)

    Article  Google Scholar 

  3. Zhang, P.M., et al.: Spike sorting based on automatic template reconstruction with a partial solution to the overlapping problem. J. Neurosci. Methods 135(1–2), 55–65 (2004)

    Article  Google Scholar 

  4. Borghi, T., et al.: A simple method for efficient spike detection in multiunit recordings. J. Neurosci. Methods 163(1), 176–180 (2007)

    Article  Google Scholar 

  5. Shoham, S., Fellows, M.R., Normann, R.A.: Robust, automatic spike sorting using mixtures of multivariate t-distributions. J. Neurosci. Methods 127(2), 111–122 (2003)

    Article  Google Scholar 

  6. Hulata, E., Segev, R., Ben-Jacob, E.: A method for spike sorting and detection based on wavelet packets and Shannon’s mutual information. J. Neurosci. Methods 117(1), 1–12 (2002)

    Article  Google Scholar 

  7. Takekawa, T., Isomura, Y., Fukai, T.: Accurate spike sorting for multi-unit recordings. Eur. J. Neurosci. 31(2), 263–272 (2010)

    Article  Google Scholar 

  8. Wood, F., Black, M.J.: A nonparametric Bayesian alternative to spike sorting. J. Neurosci. Methods 173(1), 1–12 (2008)

    Article  Google Scholar 

  9. Jia, H.J., et al.: The latest research progress on spectral clustering. Neural Comput. Appl. 24(7–8), 1477–1486 (2014)

    Article  Google Scholar 

  10. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. Adv. Neural. Inf. Process. Syst. 2, 849–856 (2001)

    Google Scholar 

  11. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: Advances in Neural Information Processing Systems (2004)

    Google Scholar 

  12. Übeyli, E.D.: Wavelet/mixture of experts network structure for EEG signals classification. Expert Syst. Appl. 34(3), 1954–1962 (2008)

    Article  Google Scholar 

  13. Quiroga, R.Q., Nadasdy, Z., Ben-Shaul, Y.: Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput. 16(8), 1661–1687 (2004)

    Article  Google Scholar 

  14. Quian, Q.R., et al.: Wavelet transform in the analysis of the frequency composition of evoked potentials. Brain Res. Protoc. 8(1), 16–24 (2001)

    Article  Google Scholar 

  15. Adeli, H., Ghosh-Dastidar, S., Dadmehr, N.: A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Trans. Biomed. Eng. 54(2), 205–211 (2007)

    Article  Google Scholar 

  16. Fahmy, A.A., et al.: Feature extraction of epilepsy EEG using discrete wavelet transform. In: Computer Engineering Conference (2017)

    Google Scholar 

  17. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  18. Fred, A.L., Jain, A.K.: Combining multiple clustering using evidence accumulation. IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 835–850 (2005)

    Article  Google Scholar 

  19. Huang, D., Wang, C.D., Lai, J.H.: Locally weighted ensemble clustering. IEEE Trans. Cybern. 48(5), 1460–1473 (2018)

    Article  Google Scholar 

  20. Zhou, Z.H., Tang, W.: Cluster ensemble. Knowl.-Based Syst. 19(1), 77–83 (2006)

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by Natural Science Foundation of China (No. 61603197, 61772284, 61876091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ji, W., Li, Z., Li, Y. (2019). Spike Sorting with Locally Weighted Co-association Matrix-Based Spectral Clustering. In: U., L., Lauw, H. (eds) Trends and Applications in Knowledge Discovery and Data Mining. PAKDD 2019. Lecture Notes in Computer Science(), vol 11607. Springer, Cham. https://doi.org/10.1007/978-3-030-26142-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26142-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26141-2

  • Online ISBN: 978-3-030-26142-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics