Skip to main content

Transfer Channel Pruning for Compressing Deep Domain Adaptation Models

  • Conference paper
  • First Online:
  • 823 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11607))

Abstract

Deep unsupervised domain adaptation has recently received increasing attention from researchers. However, existing methods are computationally intensive due to the computational cost of CNN (Convolutional Neural Networks) adopted by most work. There is no effective network compression method for such problem. In this paper, we propose a unified Transfer Channel Pruning (TCP) approach for accelerating deep unsupervised domain adaptation (UDA) models. TCP is capable of compressing the deep UDA model by pruning less important channels while simultaneously learning transferable features by reducing the cross-domain distribution divergence. Therefore, it reduces the impact of negative transfer and maintains competitive performance on the target task. To the best of our knowledge, TCP is the first approach that aims at accelerating deep unsupervised domain adaptation models. TCP is validated on two benchmark datasets – Office-31 and ImageCLEF-DA with two common backbone networks – VGG16 and ResNet50. Experimental results demonstrate that TCP achieves comparable or better classification accuracy than other comparison methods while significantly reducing the computational cost. To be more specific, in VGG16, we get even higher accuracy after pruning 26% floating point operations (FLOPs); in ResNet50, we also get higher accuracy on half of the tasks after pruning 12% FLOPs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://imageclef.org/2014/adaptation.

References

  1. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  2. Chollet, F.: Xception: deep learning with depthwise separable convolutions. arXiv preprint arXiv:1610.02357 (2017)

  3. Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear structure within convolutional networks for efficient evaluation. In: Advances in Neural Information Processing Systems, pp. 1269–1277 (2014)

    Google Scholar 

  4. Donahue, J., et al.: Decaf: a deep convolutional activation feature for generic visual recognition. In: ICML, pp. 647–655 (2014)

    Google Scholar 

  5. Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T.: Unsupervised visual domain adaptation using subspace alignment. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2960–2967 (2013)

    Google Scholar 

  6. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: ICML (2015)

    Google Scholar 

  7. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Gong, B., Grauman, K., Sha, F.: Connecting the dots with landmarks: discriminatively learning domain-invariant features for unsupervised domain adaptation. In: ICML, pp. 222–230 (2013)

    Google Scholar 

  9. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149 (2015)

  10. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural network. In: Advances in Neural Information Processing Systems, pp. 1135–1143 (2015)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. In: International Conference on Computer Vision (ICCV), vol. 2 (2017)

    Google Scholar 

  13. Hoffman, J., et al.: CyCADA: cycle-consistent adversarial domain adaptation. In: ICML (2018)

    Google Scholar 

  14. Hou, C.A., Tsai, Y.H.H., Yeh, Y.R., Wang, Y.C.F.: Unsupervised domain adaptation with label and structural consistency. IEEE Trans. Image Process. 25(12), 5552–5562 (2016)

    Article  MathSciNet  Google Scholar 

  15. Hu, Y., Sun, S., Li, J., Wang, X., Gu, Q.: A novel channel pruning method for deep neural network compression. arXiv preprint arXiv:1805.11394 (2018)

  16. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)

    Google Scholar 

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  18. Lin, J., Rao, Y., Lu, J., Zhou, J.: Runtime neural pruning. In: Advances in Neural Information Processing Systems, pp. 2181–2191 (2017)

    Google Scholar 

  19. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. In: ICML (2015)

    Google Scholar 

  20. Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer feature learning with joint distribution adaptation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2200–2207 (2013)

    Google Scholar 

  21. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: ICML (2017)

    Google Scholar 

  22. Luo, J.H., Wu, J.: Autopruner: an end-to-end trainable filter pruning method for efficient deep model inference. arXiv preprint arXiv:1805.08941 (2018)

  23. Luo, J.H., Wu, J., Lin, W.: Thinet: a filter level pruning method for deep neural network compression. arXiv preprint arXiv:1707.06342 (2017)

  24. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional neural networks for resource efficient inference. In: ICLR (2017)

    Google Scholar 

  25. Pan, S.J., Kwok, J.T., Yang, Q.: Transfer learning via dimensionality reduction. In: AAAI, vol. 8, pp. 677–682 (2008)

    Google Scholar 

  26. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 22(2), 199–210 (2011)

    Article  Google Scholar 

  27. Pan, S.J., Yang, Q., et al.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  28. Paszke, A., et al.: Automatic differentiation in pyTorch (2017)

    Google Scholar 

  29. Patel, V.M., Gopalan, R., Li, R., Chellappa, R.: Visual domain adaptation: a survey of recent advances. IEEE Signal Process. Mag. 32(3), 53–69 (2015)

    Article  Google Scholar 

  30. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: imagenet classification using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_32

    Chapter  Google Scholar 

  31. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  32. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  33. Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation. In: AAAI, vol. 6, p. 8 (2016)

    Google Scholar 

  34. Sun, B., Saenko, K.: Subspace distribution alignment for unsupervised domain adaptation. In: BMVC, pp. 24.1–24.10 (2015)

    Google Scholar 

  35. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35

    Chapter  Google Scholar 

  36. Tahmoresnezhad, J., Hashemi, S.: Visual domain adaptation via transfer feature learning. Knowl. Inf. Syst. 50(2), 585–605 (2017)

    Article  Google Scholar 

  37. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Computer Vision and Pattern Recognition (CVPR), vol. 1, p. 4 (2017)

    Google Scholar 

  38. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: maximizing for domain invariance. arXiv preprint arXiv:1412.3474 (2014)

  39. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: Proceedings of CVPR, pp. 5018–5027 (2017)

    Google Scholar 

  40. Wang, J., Chen, Y., Hao, S., Feng, W., Shen, Z.: Balanced distribution adaptation for transfer learning. In: 2017 IEEE International Conference on Data Mining (ICDM), pp. 1129–1134. IEEE (2017)

    Google Scholar 

  41. Wang, J., Feng, W., Chen, Y., Yu, H., Huang, M., Yu, P.S.: Visual domain adaptation with manifold embedded distribution alignment. In: 2018 ACM Multimedia Conference on Multimedia Conference, pp. 402–410. ACM (2018)

    Google Scholar 

  42. Wang, J., et al.: Everything about transfer learning and domain adapation. http://transferlearning.xyz

  43. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)

    Google Scholar 

  44. Zhou, A., Yao, A., Guo, Y., Xu, L., Chen, Y.: Incremental network quantization: towards lossless CNNS with low-precision weights. arXiv preprint arXiv:1702.03044 (2017)

  45. Zhuang, F., Cheng, X., Luo, P., Pan, S.J., He, Q.: Supervised representation learning: transfer learning with deep autoencoders. In: IJCAI, pp. 4119–4125 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqiang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, C., Wang, J., Chen, Y., Wu, Z. (2019). Transfer Channel Pruning for Compressing Deep Domain Adaptation Models. In: U., L., Lauw, H. (eds) Trends and Applications in Knowledge Discovery and Data Mining. PAKDD 2019. Lecture Notes in Computer Science(), vol 11607. Springer, Cham. https://doi.org/10.1007/978-3-030-26142-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26142-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26141-2

  • Online ISBN: 978-3-030-26142-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics