Skip to main content

Feasibility Algorithms for the Duplication-Loss Cost

  • Conference paper
  • First Online:
  • 895 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11653))

Abstract

Gene duplications are a dominant force in creating genetic novelty, and studying their evolutionary history is benefiting various research areas. The gene duplication model, which was introduced more than 40 years ago, is widely used to infer duplication histories by resolving the discordance between the evolutionary history of a gene family and the species tree through which this family has evolved. Today, for many gene families lower bounds on the number of gene duplications that have occurred along each edge of the species tree, called duplication scenarios, can be derived, for example from genome duplications. Recently, the gene duplication model has been augmented to include duplication scenarios and to address the question of whether such a scenario is feasible for a given gene family. Non-feasibility of a duplication scenario for a gene family can provide a strong indication that this family might not be well-resolved, and identifying well-resolved gene families is a challenging task in evolutionary biology. However, genome duplications are often followed by episodes of gene losses, and lost genes can explain non-feasible duplication scenarios. Here, we address this major shortcoming of the augmented duplication model, by proposing a gene duplication model that incorporates duplication-loss scenarios. We describe efficient algorithms that decide whether a duplication-loss scenario is feasible for a gene family; and if so, compute a gene tree for the family that infers the minimum duplication-loss events satisfying the scenario.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    When it is clear from the context, the superscript G is omitted for clarity in \(\gamma \), \(\sigma \), \(\delta \) and \(\beta \).

  2. 2.

    We assume that the maximum is \(-\infty \) if the set of s-feasible trees is empty.

References

  1. Akerborg, O., Sennblad, B., Arvestad, L., Lagergren, J.: Simultaneous bayesian gene tree reconstruction and reconciliation analysis. Proc. Natl. Acad. Sci. U.S.A. 106(14), 5714–5719 (2009)

    Article  Google Scholar 

  2. Altenhoff, A.M., Dessimoz, C.: Inferring orthology and paralogy. In: Anisimova, M. (ed.) Evolutionary Genomics, pp. 259–279. Humana Press, Totowa (2012)

    Chapter  Google Scholar 

  3. Arvestad, L., Berglund, A.C., Lagergren, J., Sennblad, B.: Bayesian gene/species tree reconciliation and orthology analysis using MCMC. Bioinformatics 19(suppl1), 7–15 (2003)

    Article  Google Scholar 

  4. Bininda-Emonds, O.R. (ed.): Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life. Computational Biology, vol. 4. Springer, Dordrecht (2004). https://doi.org/10.1007/978-1-4020-2330-9

    Book  MATH  Google Scholar 

  5. Blanc, G., Wolfe, K.H.: Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16(7), 1667–1678 (2004)

    Article  Google Scholar 

  6. Bonizzoni, P., Della Vedova, G., Dondi, R.: Reconciling a gene tree to a species tree under the duplication cost model. Theor. Comput. Sci. 347, 36–53 (2005)

    Article  MathSciNet  Google Scholar 

  7. Bordewich, M., Semple, C.: On the computational complexity of the rooted subtree prune and regraft distance. Ann. Comb. 8, 409–423 (2004)

    Article  MathSciNet  Google Scholar 

  8. Chauve, C., El-Mabrouk, N., Guéguen, L., Semeria, M., Tannier, E.: Duplication, rearrangement and reconciliation: a follow-up 13 years later. In: Chauve, C., El-Mabrouk, N., Tannier, E. (eds.) Models and Algorithms for Genome Evolution. Computational Biology, vol. 19, pp. 47–62. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5298-9_4

    Chapter  Google Scholar 

  9. Chen, K., Durand, D., Farach-Colton, M.: NOTUNG: a program for dating gene duplications and optimizing gene family trees. J. Comput. Biol. 7(3–4), 429–447 (2000)

    Article  Google Scholar 

  10. Dujon, B., et al.: Genome evolution in yeasts. Nature 430, 35–44 (2004)

    Article  Google Scholar 

  11. Eulenstein, O.: Vorhersage von Genduplikationen und deren Entwicklung in der Evolution. Ph.D. thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany (1998)

    Google Scholar 

  12. Eulenstein, O., Huzurbazar, S., Liberles, D.: Reconciling phylogenetic trees. In: Dittmar, L. (ed.) Evolution After Gene Duplication. Wiley, New York (2010)

    Google Scholar 

  13. Goodman, M., Czelusniak, J., Moore, G., Romero-Herrera, A., Matsuda, G.: Fitting the gene lineage into its species lineage. A parsimony strategy illustrated by cladograms constructed from globin sequences. Syst. Zool. 28(2), 132–163 (1979)

    Article  Google Scholar 

  14. Górecki, P., Eulenstein, O., Tiuryn, J.: Unrooted tree reconciliation: a unified approach. IEEE/ACM TCBB 10(2), 522–536 (2013)

    Google Scholar 

  15. Górecki, P., Tiuryn, J.: DLS-trees: a model of evolutionary scenarios. Theor. Comput. Sci. 359(1–3), 378–399 (2006)

    Article  MathSciNet  Google Scholar 

  16. Huson, D.H., Scornavacca, C.: A survey of combinatorial methods for phylogenetic networks. Genome Biol. Evol. 3, 23–35 (2011)

    Article  Google Scholar 

  17. Ihara, K., et al.: Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation. J. Mol. Biol. 285(1), 163–174 (1999)

    Article  Google Scholar 

  18. Kamneva, O.K., Knight, S.J., Liberles, D.A., Ward, N.L.: Analysis of genome content evolution in PVC bacterial super-phylum: assessment of candidate genes associated with cellular organization and lifestyle. Genome Biol. Evol. 4(12), 1375–1390 (2012)

    Article  Google Scholar 

  19. Kamneva, O.K., Ward, N.L.: Reconciliation approaches to determining HGT, duplications, and losses in gene trees. In: Michael Goodfellow, I.S., Chun, J. (eds.) New Approaches to Prokaryotic Systematics, Methods in Microbiology, Chap. 9, vol. 41, pp. 183–199. Academic Press, Cambridge (2014)

    Google Scholar 

  20. Koonin, E.V.: Orthologs, paralogs, and evolutionary genomics. Annu. Rev. Genet. 39, 309–338 (2005)

    Article  Google Scholar 

  21. Maddison, W.P.: Gene trees in species trees. Syst. Biol. 46(3), 523–536 (1997)

    Article  Google Scholar 

  22. Markin, A., Vadali, V.S.K.T., Eulenstein, O.: Solving the gene duplication feasibility problem in linear time. In: Wang, L., Zhu, D. (eds.) COCOON 2018. LNCS, vol. 10976, pp. 378–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94776-1_32

    Chapter  Google Scholar 

  23. Ohno, S.: Evolution by Gene Duplication. Springer, Heidelberg (1970). https://doi.org/10.1007/978-3-642-86659-3

    Book  Google Scholar 

  24. Page, R.: From gene to organismal phylogeny: reconciled trees and the gene tree/species tree problem. Mol. Phylogenet. Evol. 7(2), 231–240 (1997)

    Article  Google Scholar 

  25. Renny-Byfield, S., Wendel, J.F.: Doubling down on genomes: polyploidy and crop plants. Am. J. Bot. 101(10), 1711–1725 (2014)

    Article  Google Scholar 

  26. Thornton, K., Long, M.: Rapid divergence of gene duplicates on the Drosophila melanogaster X chromosome. Mol. Biol. Evol. 19(6), 918–925 (2002)

    Article  Google Scholar 

  27. Zhang, L.: From gene trees to species trees II: species tree inference by minimizing deep coalescence events. IEEE/ACM TCBB 8, 1685–1691 (2011)

    Google Scholar 

  28. Zhang, L.: On a Mirkin-Muchnik-Smith conjecture for comparing molecular phylogenies. J. Comput. Biol. 4(2), 177–187 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

The support was provided by the National Science Center grant 2017/27/B/ST6/02720 and the National Science Foundation under Grant No. 1617626.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Górecki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Górecki, P., Markin, A., Eulenstein, O. (2019). Feasibility Algorithms for the Duplication-Loss Cost. In: Du, DZ., Duan, Z., Tian, C. (eds) Computing and Combinatorics. COCOON 2019. Lecture Notes in Computer Science(), vol 11653. Springer, Cham. https://doi.org/10.1007/978-3-030-26176-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26176-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26175-7

  • Online ISBN: 978-3-030-26176-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics