Skip to main content

A Simple Construction of Broadcast Graphs

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11653))

Abstract

Broadcasting is one of the basic primitives of communication in usual networks. It is a process of information dissemination in which one informed node of the network, called the originator, distributes the message to all other nodes of the network by placing a series of calls along the communication lines. The network is modeled as a graph. The broadcast time of a given vertex is the minimum time required to broadcast a message from the originator to all other vertices of the graph. The broadcast time of a graph is the maximum time required to broadcast from any vertex in the graph. Many papers have investigated the construction of minimum broadcast graphs, the cheapest possible broadcast network architecture (having the fewest communication lines) in which broadcasting can be accomplished as fast as theoretically possible from any vertex. Since this problem is very difficult, numerous papers give sparse networks in which broadcasting can be completed in minimum time from any originator. In this paper, we improve the existing upper bounds on the number of edges by constructing sparser graphs and by presenting a minimum time broadcast algorithm from any originator.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Averbuch, A., Shabtai, R.H., Roditty, Y.: Efficient construction of broadcast graphs. Discrete Appl. Math. 171, 9–14 (2014)

    Article  MathSciNet  Google Scholar 

  2. Bermond, J.-C., Fraigniaud, P., Peters, J.G.: Antepenultimate broadcasting. Networks 26(3), 125–137 (1995)

    Article  MathSciNet  Google Scholar 

  3. Bermond, J.-C., Hell, P., Liestman, A.L., Peters, J.G.: Sparse broadcast graphs. Discrete Appl. Math. 36(2), 97–130 (1992)

    Article  MathSciNet  Google Scholar 

  4. Chau, S.-C., Liestman, A.L.: Constructing minimal broadcast networks. J. Comb. Inf. Syst. Sci. 10, 110–122 (1985)

    MathSciNet  MATH  Google Scholar 

  5. Dinneen, M.J., Fellows, M.R., Faber, V.: Algebraic constructions of efficient broadcast networks. In: Mattson, H.F., Mora, T., Rao, T.R.N. (eds.) AAECC 1991. LNCS, vol. 539, pp. 152–158. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54522-0_104

    Chapter  MATH  Google Scholar 

  6. Farley, A.M.: Minimal broadcast networks. Networks 9(4), 313–332 (1979)

    Article  MathSciNet  Google Scholar 

  7. Farley, A.M., Hedetniemi, S., Mitchell, S., Proskurowski, A.: Minimum broadcast graphs. Discrete Math. 25(2), 189–193 (1979)

    Article  MathSciNet  Google Scholar 

  8. Grigni, M., Peleg, D.: Tight bounds on mimimum broadcast networks. SIAM J. Discrete Math. 4(2), 207–222 (1991)

    Article  MathSciNet  Google Scholar 

  9. Harutyunyan, H.A.: An efficient vertex addition method for broadcast networks. Internet Math. 5(3), 211–225 (2008)

    Article  MathSciNet  Google Scholar 

  10. Harutyunyan, H.A., Li, Z.: A new construction of broadcast graphs. In: Govindarajan, S., Maheshwari, A. (eds.) CALDAM 2016. LNCS, vol. 9602, pp. 201–211. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29221-2_17

    Chapter  Google Scholar 

  11. Harutyunyan, H.A., Li, Z.: Broadcast graphs using new dimensional broadcast schemes for Knödel graphs. In: Gaur, D., Narayanaswamy, N.S. (eds.) CALDAM 2017. LNCS, vol. 10156, pp. 193–204. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53007-9_18

    Chapter  Google Scholar 

  12. Harutyunyan, H.A., Liestman, A.L.: More broadcast graphs. Discrete Appl. Math. 98(1), 81–102 (1999)

    Article  MathSciNet  Google Scholar 

  13. Harutyunyan, H.A., Liestman, A.L.: Upper bounds on the broadcast function using minimum dominating sets. Discrete Math. 312(20), 2992–2996 (2012)

    Article  MathSciNet  Google Scholar 

  14. Khachatrian, L.H., Harutounian, H.S.: Construction of new classes of minimal broadcast networks. In: International Conference on Coding Theory, Dilijan, Armenia, pp. 69–77 (1990)

    Google Scholar 

  15. Knödel, W.: New gossips and telephones. Discrete Math. 13(1), 95 (1975)

    Article  MathSciNet  Google Scholar 

  16. Labahn, R.: A minimum broadcast graph on 63 vertices. Discrete Appl. Math. 53(1–3), 247–250 (1994)

    Article  MathSciNet  Google Scholar 

  17. Maheo, M., Saclé, J.-F.: Some minimum broadcast graphs. Discrete Appl. Math. 53(1–3), 275–285 (1994)

    Article  MathSciNet  Google Scholar 

  18. Mitchell, S., Hedetniemi, S.: A census of minimum broadcast graphs. J. Comb. Inf. Syst. Sci. 5, 141–151 (1980)

    MathSciNet  MATH  Google Scholar 

  19. Park, J.-H., Chwa, K.-Y.: Recursive circulant: a new topology for multicomputer networks. In: International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN 1994), pp. 73–80. IEEE (1994)

    Google Scholar 

  20. Saclé, J.-F.: Lower bounds for the size in four families of minimum broadcast graphs. Discrete Math. 150(1–3), 359–369 (1996)

    Article  MathSciNet  Google Scholar 

  21. Shao, B.: On k-broadcasting in graphs. Ph.D. thesis, Concordia University (2006)

    Google Scholar 

  22. Slater, P.J., Cockayne, E.J., Hedetniemi, S.T.: Information dissemination in trees. SIAM J. Comput. 10(4), 692–701 (1981)

    Article  MathSciNet  Google Scholar 

  23. Xiao, J., Wang, X.: A research on minimum broadcast graphs. Chin. J. Comput. 11, 99–105 (1988)

    Google Scholar 

  24. Zhou, J., Zhang, K.: A minimum broadcast graph on 26 vertices. Appl. Math. Lett. 14(8), 1023–1026 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyuan Li .

Editor information

Editors and Affiliations

Appendix: Comparison

Appendix: Comparison

By our assumption \(k_p<\cdots <k_1\le m-3\), \(k_i\) is strictly larger than \(k_{i+1}\). Then in general \(k_i\le m-i-2\) for \(1\le i\le p\). Similarly, since \(1\le k_p<\cdots <k_1\), \(p-i+1\le k_i\) for \(1\le i\le p\). Thus, \(p-i+1\le k_i\le m-i-2\), where \(1\le i\le p\).

$$\begin{aligned}&OB-NB\\ =&\, \frac{1}{2}n(m-1)-\frac{1}{2}(\frac{1}{2}n(m-1)+\frac{1}{2}\sum _{i=1}^{p-1}(2^{m-i}-2^{k_i})(m-k_i)\\&\quad +\frac{1}{2}(2^{m-p+1}-2^{k_p})(m-k_p)+\sum _{i=1}^{p-1}(2^{k_i}-\sum _{j=i+1}^{p}2^{k_j}))\\ =&\, \frac{1}{4}n(m-1)-\frac{1}{4}\sum _{i=1}^{p-1}(2^{m-i}-2^{k_i})(m-k_i)\\&\quad -\frac{1}{4}(2^{m-p+1}-2^{k_p})(m-k_p)-\frac{1}{2}\sum _{i=1}^{p-1}(2^{k_i}-\sum _{j=i+1}^{p}2^{k_j}))\\ =&\, \frac{1}{4}n(m-1)-\frac{1}{4}\sum _{i=1}^{p-1}(2^{m-i}-2^{k_i})(m-k_i)\\&\quad -\frac{1}{4}(2^{m-p+1}-2^{k_p})(m-k_p)-\frac{1}{2}(2^{k_1}-\sum _{i=2}^{p-1}(i-2)2^{k_i}-(p-1)2^{k_p}) \end{aligned}$$

By substituting \(n=\sum _{i=1}^{p-1}(2^{m-i}-2^{k_i})+2^{m-p+1}-2^{k_p}\),

$$\begin{aligned} =&\, \frac{1}{4}\sum _{i=1}^{p-1}(2^{m-i}-2^{k_i})(m-1)+\frac{1}{4}(2^{m-p+1}-2^{k_p})(m-1)-\frac{1}{4}\sum _{i=1}^{p-1}(2^{m-i}-2^{k_i})(m-k_i)\\&\quad -\frac{1}{4}(2^{m-p+1}-2^{k_p})(m-k_p)-\frac{1}{2}(2^{k_1}-\sum _{i=2}^{p-1}(i-2)2^{k_i}-(p-1)2^{k_p})\\ =&\, \frac{1}{4}\sum _{i=1}^{p-1}(2^{m-i}-2^{k_i})(k_i+1)+\frac{1}{4}(2^{m-p+1}-2^{k_p})(k_p+1)\\&\quad -\frac{1}{2}2^{k_1}+\frac{1}{2}\sum _{i=2}^{p-1}(i-2)2^{k_i}+\frac{1}{2}(p-1)2^{k_p} \end{aligned}$$

Since \(k_i\ge 1\),

$$\begin{aligned} \ge&\, \frac{1}{2}\sum _{i=1}^{p-1}(2^{m-i}-2^{k_i})+\frac{1}{2}(2^{m-p+1}-2^{k_p})\\&\quad -\frac{1}{2}2^{k_1}+\frac{1}{2}\sum _{i=2}^{p-1}(i-2)2^{k_i}+\frac{1}{2}(p-1)2^{k_p}\\ =&\, \frac{1}{2}(2^{m-1}-2^{k_1}-2^{k_1})+\frac{1}{2}\sum _{i=2}^{p-1}(2^{m-i}-2^{k_i})+\frac{1}{2}(2^{m-p+1}-2^{k_p})\\&\quad +\frac{1}{2}\sum _{i=2}^{p-1}(i-2)2^{k_i}+\frac{1}{2}(p-1)2^{k_p}\\ =&\, \frac{1}{2}(2^{m-1}-2^{k_1}-2^{k_1})+\frac{1}{2}(2^{m-2}+2^{m-3}+2^{m-p-2})\\&\quad +\frac{1}{2}\sum _{i=2}^{p-1}(i-2)2^{k_i}+\frac{1}{2}(p-1)2^{k_p}\\ \ge&\, \frac{1}{2}(2^{m-1}-2^{k_1}-2^{k_1})+\frac{1}{2}(2^{m-2}+2^{m-3}) \end{aligned}$$

As \(k_1\le m-3\),

$$\begin{aligned} OB-NB&\ge \frac{1}{2}(2^{m-1}-2^{m-3}-2^{m-3})+\frac{1}{2}(2^{m-2}+2^{m-3})\\&= 2^{m-2}+2^{m-4} \end{aligned}$$

Thus, our new upper bound is a better upper bound on B(n) when \(2^m-2^{\frac{m+3}{2}}<n \le 2^m-8\).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Harutyunyan, H.A., Li, Z. (2019). A Simple Construction of Broadcast Graphs. In: Du, DZ., Duan, Z., Tian, C. (eds) Computing and Combinatorics. COCOON 2019. Lecture Notes in Computer Science(), vol 11653. Springer, Cham. https://doi.org/10.1007/978-3-030-26176-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26176-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26175-7

  • Online ISBN: 978-3-030-26176-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics