
ar
X

iv
:1

80
7.

00
12

1v
1

 [
cs

.D
S]

 3
0

Ju
n

20
18

An optimal algorithm for 2-bounded delay buffer management with

lookahead

Koji M. Kobayashi

Abstract

The bounded delay buffer management problem, which was proposed by Kesselman et al.
(STOC 2001 and SIAM Journal on Computing 33(3), 2004), is an online problem focusing on
buffer management of a switch supporting Quality of Service (QoS). The problem definition is
as follows: Packets arrive to a buffer over time and each packet is specified by the release time,
deadline and value. An algorithm can transmit at most one packet from the buffer at each integer
time and can gain its value as the profit if transmitting a packet by its deadline after its release
time. The objective of this problem is to maximize the gained profit. We say that an instance
of the problem is s-bounded if for any packet, an algorithm has at most s chances to transmit
it. For any s ≥ 2, Hajek (CISS 2001) showed that the competitive ratio of any deterministic
algorithm is at least (1 +

√
5)/2 ≈ 1.619. It is conjectured that there exists an algorithm whose

competitive ratio matching this lower bound for any s. However, it has not been shown yet.
Then, when s = 2, Böhm et al. (ISAAC 2016) introduced the lookahead ability to an online
algorithm, that is the algorithm can gain information about future arriving packets, and showed
that the algorithm achieves the competitive ratio of (−1 +

√
13)/2 ≈ 1.303. Also, they showed

that the competitive ratio of any deterministic algorithm is at least (1 +
√

17)/4 ≈ 1.281.
In this paper, for the 2-bounded model with lookahead, we design an algorithm with a

matching competitive ratio of (1 +
√

17)/4.

1 Introduction

The online buffer management problem proposed by Aiello et al. [1] formulates the management
of buffers to store arriving packets in a network switch with Quality of Service (QoS) support as
an online problem. This problem has received much attention among online problems and has
been studied for the last fifteen years, which leads to developing various variants of this problem
(see comprehensive surveys [16, 28]). Kesselman et al. [23] proposed the bounded delay buffer

management problem as one of the variants, whose definition is as follows: Packets arrive to a
buffer over time. A packet p is specified by the release time r(p), value v(p) and deadline d(p). An
algorithm is allowed to transfer at most one packet at each integer time. If the algorithm transmits
a packet between its release time and deadline, it can gain its value as the profit. The objective
of this problem is to maximize the gained profit. The performance of an online algorithm for this
problem is evaluated using competitive analysis [11, 29]. If for any problem instance, the profit of
an optimal offline algorithm OPT is at most c times that of an online algorithm A, then we say
that the competitive ratio of A is at most c. We call a problem instance the s-bounded instance

(or s-bounded delay buffer management problem) in which for any packet p, d(p) − r(p) + 1 ≤ s.
For any s ≥ 2, Hajek [18] showed that the competitive ratio of any deterministic algorithm is at
least (1 +

√
5)/2 ≈ 1.619. Also, it is conjectured that for any s ≥ 2, there exists a deterministic

algorithm with a competitive ratio of (1 +
√

5)/2 (see, e.g. [16]), which has not been proved yet.

1

http://arxiv.org/abs/1807.00121v1

There is much research among online problems to reduce the competitive ratio of an online
algorithm for the original problems by adding extra abilities to the algorithm. One of the major
methods is called the lookahead ability, with which an online algorithm can obtain information
about arriving packets in the near future. This ability is introduced to various online problems:
The bin packing problem [17], the paging problem [2, 12], the list update problem [3], the scheduling
problem [27] and so on. Then, Böhm et al. [10] introduced the lookahead ability to the bounded
delay buffer management problem, that is, they gave an online algorithm for this problem an ability
to obtain the information about future arriving packets and analyzed its performance.

Previous Results and Our Results. Böhm et al. [10] studied the 2-bounded bounded
delay buffer management problem with lookahead. They designed a deterministic algorithm whose
competitive ratio is at most (−1 +

√
13)/2 ≈ 1.303. Also, they proved that the competitive ratio

of any deterministic algorithm is at least (1 +
√

17)/4 ≈ 1.281.

In this paper, we showed an optimal online algorithm for this problem, that is, its competitive
ratio is exactly (1 +

√
17)/4.

Related Results. As mentioned above, for the s-bounded delay model without lookahead,
Hajek [18] showed that the competitive ratio of any deterministic algorithm is at least (1+

√
5)/2 ≈

1.619 in the case of s ≥ 2. Independently, this bound was also shown in [13, 4, 30]. For s = ∞,
Englert and Westermann [15] developed a deterministic online algorithm whose competitive ratio
is at most 2

√
2 − 1 ≈ 1.829, which is the current best upper bound. For each s = 2 [23], 3 [5, 9],

and 4 [10], an algorithm with a competitive ratio of (1 +
√

5)/2 was designed. For any s ≥ 5,
an algorithm with a competitive ratio of larger than (1 +

√
5)/2 but less than 2 was shown [5, 9].

Moreover, in the case where an algorithm must decide which packet to transmit on the basis of
the current buffer situation, called the memoryless case, some results were shown [5, 9, 15]. The
agreeable deadline variant has also been studied. In this variant, the larger the release times of
packets are, the larger their deadlines are. Specifically, for any packets p and p′, d(p) ≤ d(p′)
if r(p) < r(p′). The lower bound of (1 +

√
5)/2 by Hajek [18] is applicable to this variant. Li

et al. [25, 21] displayed an optimal algorithm, whose competitive ratio matches the lower bound.
The case in which for any packet p, d(p)− r(p) + 1 = s has also been studied, called the s-uniform
delay variant, which is a specialized variant of the agreeable deadline variant. The current best
upper and lower bounds for this variant are (1 +

√
5)/2 [25, 21] and 1.377 [14], respectively.

The research on randomized algorithms for the bounded delay buffer management problem has
also been conducted extensively [13, 5, 9, 6, 19, 20, 21, 22]. In the case in which s is general,
the current best upper and lower bounds are e/(e − 1) ≈ 1.582 [5, 9, 22] and 5/4 = 1.25 [13],
respectively, against an oblivious adversary were shown. Upper and lower bounds of e/(e−1) [6, 22]
and 4/3 ≈ 1.333 [6], respectively, against an adaptive adversary were shown. For any fixed s, lower
bounds are the same with the bounds in the case in which s is general while upper bounds are
1/(1 − (1 − 1

s
)s) [22] against the both adversaries.

A generalization of the bounded delay buffer management problem has been studied, called the
weighted item collection problem [7, 8, 22]. In this problem, an online algorithm does not know
the deadline of each packet but knows the relative order of the deadlines of packets. Many other
variants of the buffer management problem have been studied extensively (see e.g. [16, 28]).

2 Model Description

We formally give the definition of the 2-bounded delay buffer management problem with lookahead,
which is addressed in this paper. An input of this problem is a sequence of phases. Time begins

2

with zero and a phase occurs at an integer time. Each phase consists of three subphases. The
first occurring subphase is the arrival subphase. At an arrival subphase, arbitrary many packets
can arrive to a buffer. The buffer has no capacity limit and hence, all arriving packets can always
be accepted to the buffer. A packet p is characterized by the release time, deadline and value,
denoted by r(p), d(p) and v(p) respectively. Arrival times and deadlines are non-negative integers
and values are positive reals. d(p) − r(p) ≤ 1 holds because we focus on 2-bounded instances. The
second subphase is the transmission phase. At a transmission subphase, an algorithm can transmit
at most one packet from its buffer if any packet. At the transmission subphase at a time t, the
algorithm can obtain the information about packets arriving at time t + 1 using the lookahead
ability. The third subphase is the expiration subphase. At an expiration subphase, a packet which
has reached its deadline is discarded from its buffer. That is, at the expiration subphase at a time
t, all the packets p in the buffer such that d(p) = t are discarded.

The profit of an algorithm is the sum of the values of packets transmitted by the algorithm.
The objective of this problem is to maximize the gained profit. Let VA(σ) denote the profit of an
algorithm A for an input σ. Let OPT be an optimal offline algorithm. We say that the competitive
ratio of an online algorithm ON is at most c if for any input σ, VOPT (σ) ≤ VON (σ)c.

For ease of analysis, we assume that when OPT does not store any packet in its buffer, the
input is over. It is easy to see that this assumption does not affect the performance analysis of an
algorithm.

3 Matching Upper Bound

3.1 Notation and Definitions for Algorithm

We give definitions before defining our algorithm CompareWithPartialOPT (CP). For any
integer time t, B(t) denotes the set of packets in CP ’s buffer immediately before the arrival subphase
at time t. That is, each packet p in the set is not transmitted before t, t > r(p) and t ≤ d(p).
For integer times t, t′(≥ t) and t′′(≥ t′) and an input σ, let OPT ∗(t, t′, t′′) be an offline algorithm
such that if the packets in OPT ∗(t, t′, t′′)’s buffer immediately before the arrival subphase at time
t is equal to those in B(t), and the subinput of σ during time [t, t′] is given to OPT ∗(t, t′, t′′),
that is, packets p such that r(p) ∈ [t, t′] arrive to OPT ∗(t, t′, t′′)’s buffer during time [t, t′], then
OPT ∗(t, t′, t′′) is allowed to transmit packets only from time t to t′′ inclusive, and chooses the packets
whose total profit is maximized. If there exist packets with the same value in OPT ∗(t, t′, t′′)’s buffer,
OPT ∗(t, t′, t′′) follows a fixed tie breaking rule. Also, P (t, t′, t′′) denotes the set of t′′− t+1 packets
transmitted by OPT ∗(t, t′, t′′) during time [t, t′′]. Note that for any t and t′(≥ t), the following
relations hold because of the optimality of packets transmitted by OPT ∗(t, t′, t′′) during time [t, t′′]:

P (t, t′, t′) ⊆ P (t, t′ + 1, t′ + 1) (1)

P (t, t′, t′) ⊆ P (t, t′, t′ + 1) (2)

and
P (t + 1, t′, t′) ⊆ P (t, t′, t′). (3)

We define for any t and i,

mi(t) = P (t, t + i, t + i)\P (t, t + i− 1, t + i− 1)

and
qi(t) = P (t, t + i, t + i + 1)\P (t, t + i, t + i).

3

Also, we define
P (t, t− 1, t− 1) = ∅.

Furthermore, we describe each value in the algorithm definition for ease of presentation as follows:

mi = mi(t)

m′

i = mi(t− 1)

m′′

i = mi(t− 2)

qi = qi(t)

q′i = qi(t− 1)

and
q′′i = qi(t− 2).

In addition,

R =
1 +

√
17

4

and

α =
−3 +

√
17

2
.

CP uses the internal variable st for holding the name of a packet which CP transmits at a time
t. st′ =null holds at first for any integer t′. CP uses the two constants tmp1 and tmp2 if at time
t, CP cannot decide which packet to transmit at t + 1 in Cases 1.2.3.4 and 2.2.2.3. On the other
hand, once the name of a packet is set to st+1 at time t, CP certainly transmits the packet at t+1.

3.2 Algorithm

CompareWithPartialOPT (CP)

Initialize: For any integer time t′, st′ :=null.
Consider the transmission subphase at a time t. If the buffer stores no packets, do nothing.
Otherwise, do one of the following three cases and then transmit the packet whose name is set to
st.
Case 1 (st =null):
Case 1.1 (d(m0) = t): st := m0.
Case 1.2 (d(m0) 6= t):
Case 1.2.1 (d(m1) = t): st := m1 and st+1 := m0.
Case 1.2.2 (d(m1) = t + 1): st := m0 and st+1 := m1.
Case 1.2.3 (d(m1) 6= t + 1):
Case 1.2.3.1 (v(m0) ≥ v(m1) and v(q1) ≥ αv(m1)): st := q1 and st+1 := m0.
Case 1.2.3.2 (v(m0) ≥ v(m1) and v(q1) < αv(m1)): st := m0 and st+1 := m1.

Case 1.2.3.3 (v(m0) < v(m1) and v(q1)+v(m0)+v(m1)
v(m0)+v(m1)

≤ R): st := m0 and st+1 := m1.

Case 1.2.3.4 (v(m0) < v(m1) and v(q1)+v(m0)+v(m1)
v(m0)+v(m1)

> R): st := q1 and st+1 := tmp1.

Case 2 (st =tmp1):

Case 2.1 (
v(m′

0
)+v(m′

1
)+v(m′

2
)

v(q′

1
)+v(m′

0
)+v(m′

1
)
≤ R): st := m′

0 and st+1 := m′

1.

Case 2.2 (
v(m′

0
)+v(m′

1
)+v(m′

2
)

v(q′

1
)+v(m′

0
)+v(m′

1
)
> R):

4

Case 2.2.1 (d(m′

2) = t + 1): st := m′

1 and st+1 := m′

2.
Case 2.2.2 (d(m′

2) 6= t + 1):
Case 2.2.2.1 (q′2 6= q′1): st := m′

1.

Case 2.2.2.2 (q′2 = q′1 and
v(q′

2
)+v(m′

0
)+v(m′

1
)+v(m′

2
)

v(q′

1
)+v(m′

1
)+v(m′

2
)

≤ R): st := m′

1 and st+1 := m′

2.

Case 2.2.2.3 (Otherwise): st := m′

0 and st+1 := tmp2.
Case 3 (st =tmp2):

Case 3.1 (
v(m′′

0
)+v(m′′

1
)+v(m′′

2
)+v(m′′

3
)

v(q′′

1
)+v(m′′

0
)+v(m′′

1
)+v(m′′

2
)
≤ R): st := m′′

1 and st+1 := m′′

2.

Case 3.2 (
v(m′′

0
)+v(m′′

1
)+v(m′′

2
)+v(m′′

3
)

v(q′′

1
)+v(m′′

0
)+v(m′′

1
)+v(m′′

2
)
> R):

Case 3.2.1 (d(m′′

3) = t + 1): st := m′′

2 and st+1 := m′′

3.
Case 3.2.2 (d(m′′

3) 6= t + 1 and q′′3 6= q′′1): st := m′′

2.
Case 3.2.3 (d(m′′

3) 6= t + 1 and q′′3 = q′′1): st := m′′

2 and st+1 := m′′

3.

3.3 Overview of the Analysis

Consider a given input σ. Let τ be the time at which CP transmits the last packet. We partition
the time sequence [0, τ] into k sequences Ti(i = 1, . . . , k) to evaluate the competitive ratio of CP ,
in which k depends on σ and if Ti = (ti, t

′

i), then ti ≤ t′i, t1 = 0, t′k = τ and for any j = 2, . . . , k,
tj = t′j−1 + 1. The size of each Ti depends on which case CP executes at each time. Specifically, it
is defined as follows: Suppose that Ti = (t, t′) and then

• If Case 1.1 is executed at t, then t′ = t.

• If Case 1.2.1, 1.2.2, 1.2.3.1, 1.2.3.2 or 1.2.3.3 is executed at t, then t′ = t + 1.

• If Case 1.2.3.4 is executed at t and Case 2.1, 2.2.1 or 2.2.2.2 at t + 1, then t′ = t + 2.

• If Cases 1.2.3.4 and 2.2.2.1 are executed at t and t + 1, respectively, then t′ = t + 1.

• If Cases 1.2.3.4 and 2.2.2.3 are executed at t and t + 1, respectively, and Case 3.1, 3.2.1 or
3.2.3 is executed at t + 2, then t′ = t + 3.

• If Cases 1.2.3.4 and 2.2.2.3 are executed at t and t + 1, respectively, and Case 3.2.2 is
executed at t + 2, then t′ = t + 2.

For a time t, a packet whose release time is t and deadline is t + 1 is called a 2t-packet. On the
other hand, we also partition the time sequence [0, τ ′] into k time sequences T ′

i (i = 1, . . . , k), in
which τ ′ is the time at which OPT transmits the last packet. We will compare the total value
of packets transmitted by CP during the time Ti with that by OPT during the time T ′

i . T ′

i is
defined as follows: Suppose that Ti = (t, t′). Then, we define T ′

i = (t̂, t̂′), in which if CP transmits
a 2t−1-packet p at time t− 1 and OPT transmits p at time t, then t̂ = t + 1 and otherwise, t̂ = t.
Moreover, if CP transmits a 2t′-packet p′ and OPT transmits p′ at time t′ + 1, then t̂′ = t′ + 1.
Otherwise, t̂′ = t′.

We give the lemma about T ′

i .

Lemma 3.1 A time t ∈ [0, τ ′] is contained in some T ′

j.

Proof. We prove this lemma by contradiction and assume that a time t ∈ [0, τ ′] is not contained
in any T ′

j . By the assumption of a given input, OPT transmits a packet at t. If CP transmits a
packet at t, then t is contained in some Ti and t is contained in either T ′

i or T ′

i−1 by the definition
of T ′. Thus, CP does not store any packet at t and does not transmit a packet. That is, no packets

5

arrive at t. A packet p transmitted by OPT at t is a 2t−1-packet. If not, CP can transmit p at t.
Hence, CP transmits p at time t− 1. By the definition of CP , CP executes Case 1.2.3.2, 1.2.3.3,
2.2.2.2 or 3.2.3 and transmits p at t− 1, which is the last time of Ti. Therefore, t is contained in
T ′

i by the definition of T ′, which contradicts the above assumption.

For any i(∈ [1, k]), let Vi (V ′

i) denote the total value of packets transmitted by CP (OPT) during
Ti (T ′

i). By definition,

VCP (σ) =

k
∑

i=1

Vi.

By Lemma 3.1,

VOPT (σ) ≤
k

∑

i=1

V ′

i .

Since
VOPT (σ)

VCP (σ)
≤

∑k
i=1 V

′

i
∑k

i=1 Vi

≤ max
i∈[1,k]

{

V ′

i

Vi

}

,

we have using Lemma 3.7,
V ′

i

Vi
≤ R.

Therefore, we have the following theorem:

Theorem 3.2 The competitive ratio of CP is at most (1 +
√

17)/4.

3.4 Analysis

To show Lemma 3.7, we first prove the following lemmas. Let V (t, t′, t′′) denote the total value of
packets in P (t, t′, t′′). That is, V (t, t′, t′′) =

∑

p∈P (t,t′,t′′) v(p).

Lemma 3.3 For integer times t and t′(≥ t), suppose that Ti = (t, t′) and a packet that CP trans-

mits at t′ is not a 2t′-packet. Then, V ′

i ≤ V (t, t′, t′).

Proof. Suppose that Ti = (t, t′). First, we consider CP does not transmit a 2t−1-packet at time
t− 1. Then, by definition,

T ′

i = (t, t′). (4)

Furthermore, all the 2t−1-packet, which arrive at t− 1, are stored in CP ’s buffer at time t. Hence,
since we discussed the 2-bounded instance in this paper, all the packets in OPT ’s buffer at t are
stored in CP ’s buffer. Thus, by the optimality of OPT ∗(t, t′, t′) from Eq. (4),

V ′

i ≤ V (t, t′, t′).

Next, we consider the case in which CP transmits a 2t−1-packet p at t−1. First, let us consider
the case in which OPT does not transmit p at t. By definition,

T ′

i = (t, t′). (5)

6

At time t, OPT ’s buffer may store p but CP ’s buffer does not. However, it does not affect a packet
which OPT transmits at t whether p is stored in OPT ’s buffer because OPT does not transmit p
at t. Hence, by the optimality of OPT ∗(t, t′, t′) from Eq. (5),

V ′

i ≤ V (t, t′, t′).

Second, we discuss the case in which OPT transmits p at t. By definition,

T ′

i = (t + 1, t′).

Therefore,
V ′

i ≤ V (t + 1, t′, t′) ≤ V (t, t′, t′),

in which the second inequality follows from Eq. (3).

Lemma 3.4 For integer times t and t′(≥ t), suppose that Ti = (t, t′) and a packet that CP trans-

mits at t′ is a 2t′-packet. Then, V ′

i ≤ V (t, t′, t′ + 1).

Proof. Suppose that Ti = (t, t′). We have in a similar way to the proof of Lemma 3.3, either
T ′

i = (t, t′) or T ′

i = (t + 1, t′). Thus,

V ′

i ≤ V (t + 1, t′, t′) ≤ V (t, t′, t′).

Hence, by Eq. (2),
V ′

i ≤ V (t, t′, t′ + 1).

Second, we consider the case in which OPT transmits a 2t′ -packet p′ at t′+1 which CP transmits
at t′. If CP transmits a 2t−1-packet p at t− 1 and OPT transmits p at t, then T ′

i = (t + 1, t′ + 1).
Otherwise, T ′

i = (t, t′ + 1). In the either case, we have in a similar way to the proof of Lemma 3.3,

V ′

i ≤ V (t, t′ + 1, t′ + 1).

Since OPT transmits a packet at time t′ + 1 which arrives at time t′, packets arriving at t′ + 1 does
not matter to OPT . Thus,

P (t, t′ + 1, t′ + 1) = P (t, t′, t′ + 1),

which leads to
V ′

i ≤ V (t, t′, t′ + 1).

Lemma 3.5 Let t be an integer time. If CP executes Case 2.2.2.1 at time t + 1, then OPT
transmits m0(t) and m1(t) at times t and t + 1, respectively.

Proof. Suppose that Case 2.2.2.1 is executed at a time t+ 1. Then, note that q1(t) 6= q2(t) by the
condition of Case 2.2.2.1. First, let us consider the case in which r(q2(t)) ≤ t+1. By the definition of
P , P (t, t+1, t+2) = {q1(t),m0(t),m1(t)}. However, q2(t) is neither m0(t) nor m1(t) by the definition
of q2(t). Also, OPT ∗(t, t+2, t+3) obtains a higher profit by q2(t) in P (t, t+2, t+3) instead of q1(t) in
P (t, t+1, t+2). That is, v(q1(t)) < v(q2(t)). Thus, V (t, t+1, t+2) < v(q2(t))+v(m0(t))+v(m1(t)),
which contradicts the optimality of OPT ∗(t, t + 1, t + 2).

7

In the following, we consider the case in which r(q2(t)) ≥ t + 2. P (t, t + 2, t + 2) contains one
packet which OPT ∗(t, t + 2, t + 2) transmits at time t + 2. Also, P (t, t + 2, t + 3) contains q2(t),
which is not in P (t, t+ 2, t+ 2). OPT ∗(t, t+ 2, t+ 3) transmits q2(t) at or after t+ 2. Furthermore,
r(m2(t)) ≥ t + 2 because d(m2(t)) = t + 3 by the condition of Case 2.2.2. In a similar way to the
proofs of Lemmas 3.3 and 3.4, we can show that packets in OPT ’s buffer at t is included in ones in
CP ’s buffer at t. Therefore, OPT transmits q2(t) and m2(t) at or after t + 2 and transmits m0(t)
and m1(t) at t and t + 1.

Lemma 3.6 Let t be an integer time. If CP executes Case 3.2.2 at time t+2, then OPT transmits

m0(t), m1(t) and m2(t) at times t, t + 1 and t + 2, respectively.

Proof. We can show the proof of this lemma in a similar way to the proof of Lemma 3.5. Suppose
that Case 2.2.2.3 is executed at a time t + 1 and Case 3.2.2 is executed at t + 2. Note that
q1(t) = q2(t) by the condition of Case 2.2.2.3 and q1(t) 6= q3(t) by the condition of Case 3.2.2. If
r(q2(t)) ≤ t + 2, then OPT ∗(t, t + 2, t + 3) can transmit q2(t) during time [t, t + 2] instead of q1(t)
concerning P (t, t + 2, t + 3), which contradicts the optimality of OPT ∗(t, t + 2, t + 3).

Thus, r(q2(t)) ≥ t+3. P (t, t+3, t+3) contains one packet transmitted by OPT ∗(t, t+3, t+3) at
time t+3. Also, P (t, t+3, t+4) contains q3(t), which is not in P (t, t+3, t+3), and OPT ∗(t, t+3, t+4)
transmits q3(t) at or after t + 3. Moreover, since d(m3(t)) = t + 4 by the condition of Case 2.2.2,
r(m3(t)) ≥ t+ 3. Therefore, OPT transmits q3(t) and m3(t) at or after t+ 3 and transmits m0(t),
m1(t) and m2 during time [t, t + 2].

We are ready to prove Lemma 3.7.

Lemma 3.7 V ′

i /Vi ≤ R.

Proof. Suppose that CP executes Case 1 at a time t and t is contained in Tj. Note that if CP
executes Case 1.2.3.4 at t, then CP executes Case 2 at time t + 1. Moreover, if CP executes
Case 2.2.2.3 at t + 1, then CP executes Case 3 at time t + 2. For ease of presentation, mi and qi
denote mi(t) and qi(t), respectively.

Before proceeding to the proof, we give some inequalities used often later. When CP executes
Case 1.2.3.4 at t, by the condition of Case 1.2.3.4,

v(m0) < v(m1) (6)

and
v(q1) > (R− 1)(v(m0) + v(m1)). (7)

When CP executes Case 2.2 at t + 1,

v(m2) > (R − 1)(v(m0) + v(m1)) + Rv(q1). (8)

When CP executes Case 3.2 at t + 2,

v(m3) > (R− 1)(v(m0) + v(m1) + v(m2)) + Rv(q1). (9)

8

When CP executes Case 2.2.2.3 at t + 1,

v(m0) > (R − 1)(v(q2) + v(m1) + v(m2))

= (R− 1)(v(q1) + v(m1) + v(m2)) (by the condition of Case 2.2.2.3)

> (R− 1)(v(q1) + v(m1)) + (R − 1)((R − 1)(v(m0) + v(m1)) + Rv(q1)) (by Eq. (8))

= (R2 − 1)v(q1) + (R2 −R)v(m1) + (R2 − 2R + 1)v(m0)

> (R2 − 1)(R − 1)(v(m0 + v(m1)) + (R2 −R)v(m1) + (R2 − 2R + 1)v(m0) (by Eq. (7))

= (R3 − 3R + 2)v(m0) + (R3 − 2R + 1)v(m1).

By rearranging this inequality, we have

v(m0) >
R3 − 2R + 1

−R3 + 3R − 1
v(m1). (10)

Now we discuss the profit ratio for the execution of each case. When CP executes Case 1.1, CP
transmits m0 at t and Vj = v(m0) = V (t, t, t). On the other hand, V ′

j ≤ V (t, t, t) by Lemma 3.3.
Thus, V ′

j /Vj ≤ 1.

When Case 1.2.1 or 1.2.2 is executed, CP transmits both m0 and m1 and Vj = v(m0)+v(m1) =
V (t, t + 1, t + 1). By Lemma 3.3, V ′

j ≤ V (t, t + 1, t + 1). Thus, V ′

j /Vj ≤ 1.

We consider Case 1.2.3.1. CP transmits q1 and m0 at times t and t + 1, respectively, by
definition. Thus,

Vj = v(q1) + v(m0).

Since P (t, t + 1, t + 1) = {m0,m1} by the definition of P , by Lemma 3.3,

V ′

j ≤ V (t, t + 1, t + 1) = v(m0) + v(m1).

Hence,
V ′

j

Vj

≤ v(m0) + v(m1)

v(q1) + v(m0)
≤ v(m1) + v(m1)

αv(m1) + v(m1)
=

2

α + 1
= R,

in which the second inequality follows from v(q1) ≥ αv(m1) and v(m0) ≥ v(m1), which is the
condition of Case 1.2.3.1, and the last equality follows from the definitions of α and R.

Let us consider Case 1.2.3.2. Since CP transmits m0 and m1 at t and t + 1, respectively, by
definition,

Vj = v(m0) + v(m1).

P (t, t + 1, t + 1) = {m0,m1} and P (t, t + 1, t + 2) = {q1,m0,m1} by definition. If OPT does not
transmit m1 at t + 2, we have using Lemma 3.3,

V ′

j ≤ V (t, t + 1, t + 1) = v(m0) + v(m1).

Thus, V ′

j /Vj ≤ 1. If OPT transmits m1 at t + 2, we have using Lemma 3.4,

V ′

j ≤ V (t, t + 1, t + 2) = v(q1) + v(m0) + v(m1).

By these inequalities,

V ′

j

Vj
≤ v(q1) + v(m0) + v(m1)

v(m0) + v(m1)
<

αv(m0) + v(m0) + v(m0)

v(m0) + v(m0)
=

α + 2

2
= R,

9

in which the second inequality follows from v(q1) < αv(m1) and v(m0) ≥ v(m1), which is the
execution condition of Case 1.2.3.2, and the last equality is immediately from the definitions of α
and R.

We consider Case 1.2.3.3. Since CP transmits m0 and m1 at t and t + 1, respectively,

Vj = v(m0) + v(m1).

In a similar way to the proof of Case 1.2.3.2, if OPT does not transmit m1 at t+ 2, it follows from
Lemma 3.3 that

V ′

j ≤ V (t, t + 1, t + 1) = v(m0) + v(m1).

Thus, V ′

j /Vj ≤ 1. If OPT transmits m1 at time t + 2, we have by Lemma 3.4,

V ′

j ≤ V (t, t + 1, t + 2) = v(q1) + v(m0) + v(m1).

By the condition of Case 1.2.3.3,

V ′

j

Vj

≤ v(q1) + v(m0) + v(m1)

v(m0) + v(m1)
≤ R.

For the rest of the proof, suppose that CP executes Case 1.2.3.4 at t and next executes Case 2
at t + 1. Hence, CP transmits q1 at t. First, we consider the case in which Case 2.1 is executed at
t + 1. By the definition of Case 2.1, CP transmits m0 and m1 at t + 1 and t + 2, respectively, and
thus,

Vj = v(q1) + v(m0) + v(m1).

On the other hand, since P (t, t+ 2, t+ 2) = {m0,m1,m2} by definition, it follows from Lemma 3.3
that

V ′

j ≤ V (t, t + 2, t + 2) = v(m0) + v(m1) + v(m2).

Thus,
V ′

j

Vj

≤ v(m0) + v(m1) + v(m2)

v(q1) + v(m0) + v(m1)
≤ R,

which follows from the condition of Case 2.1.

We discuss Case 2.2.1. Since CP transmits m1 and m2 at t + 1 and t + 2, respectively, by
definition,

Vj = v(q1) + v(m1) + v(m2).

Since P (t, t + 2, t + 2) = {m0,m1,m2}, we have using Lemma 3.3,

V ′

j ≤ V (t, t + 1, t + 1) = v(m0) + v(m1) + v(m2).

10

Hence,

V ′

j

Vj

≤ v(m0) + v(m1) + v(m2)

v(q1) + v(m1) + v(m2)

<
v(m0) + v(m1) + (R− 1)(v(m0) + v(m1)) + Rv(q1)

v(q1) + v(m1) + (R− 1)(v(m0) + v(m1)) + Rv(q1)
(by Eq. (8))

=
R(v(m0) + v(m1)) + Rv(q1)

R(v(q1) + v(m1)) − v(m0) + (R + 1)v(q1)

<
R(v(m0) + v(m1)) + R(R− 1)(v(m0) + v(m1))

R(v(q1) + v(m1)) − v(m0) + (R + 1)(R − 1)(v(m0) + v(m1))
(by Eq. (7))

=
R2(v(m0) + v(m1))

(R2 + R− 1)(v(q1) + v(m1)) − v(m0)
<

2R2v(m0)

2(R2 + R− 1)v(m0) − v(m0)
(by Eq. (6))

=
2R2

2R2 + 2R − 3
<

R2

R
= R.

In Case 2.2.2.1, CP transmits m1 at t + 1 and hence,

Vj = v(q1) + v(m1).

By Lemma 3.5,
V ′

j = v(m0) + v(m1).

Thus,

V ′

j

Vj
≤ v(m0) + v(m1)

v(q1) + v(m1)

<
v(m0) + v(m1)

(R− 1)(v(m0) + v(m1)) + v(m1)
(by Eq. (7))

<
v(m0) + v(m0)

(R− 1)(v(m0) + v(m0)) + v(m0)
(by Eq. (6))

=
2

R
=

√
5 − 1 < R.

In Case 2.2.2.2, CP transmits m1 and m2 at t + 1 and t + 2, respectively,

Vj = v(q1) + v(m1) + v(m2).

By the definition of P , P (t, t + 2, t + 2) = {m0,m1,m2}. Since q2 = q1 by the condition of
Case 2.2.2.2, P (t, t + 2, t + 3) = {q2,m0,m1,m2} = {q1,m0,m1,m2}. If OPT does not transmit
m2 at t + 3, by Lemma 3.3,

V ′

j ≤ V (t, t + 2, t + 2) = v(m0) + v(m1) + v(m2).

Thus,
V ′

j

Vj
≤ v(m0) + v(m1) + v(m2)

v(q1) + v(m1) + v(m2)
<

v(q1) + v(m0) + v(m1) + v(m2)

v(q1) + v(m1) + v(m2)
.

If OPT transmits m2 at t + 3, by Lemma 3.4,

V ′

j ≤ V (t, t + 2, t + 3) = v(q1) + v(m0) + v(m1) + v(m2).

11

Therefore,
V ′

j

Vj
≤ v(q1) + v(m0) + v(m1) + v(m2)

v(q1) + v(m1) + v(m2)
≤ R,

which is immediately from the condition of Case 2.2.2.2.

In the following, suppose that CP executes Cases 2.2.2.3 and 3 at t + 1 and t + 2, respectively,
which indicates that CP transmits m0 at t + 1. Let us consider the case in which Case 3.1 is
executed at t + 2. Since CP transmits m1 and m2 at t + 2 and t + 3, respectively,

Vj = v(q1) + v(m0) + v(m1) + v(m2).

P (t, t + 4, t + 4) = {m0,m1,m2,m3} and thus we have using Lemma 3.3,

V ′

j ≤ V (t, t + 4, t + 4) = v(m0) + v(m1) + v(m2) + v(m3).

Thus,
V ′

j

Vj

≤ v(m0) + v(m1) + v(m2) + v(m3)

v(q1) + v(m0) + v(m1) + v(m2)
≤ R,

which is immediately from the condition of Case 3.1.

We discuss Case 3.2.1 at the end of this proof and next consider Case 3.2.2. Since CP transmits
m2 at t + 2,

Vj = v(q1) + v(m0) + v(m2).

Moreover, by Lemma 3.6,
V ′

j = v(m0) + v(m1) + v(m2).

Hence,

V ′

j

Vj
≤ v(m0) + v(m1) + v(m2)

v(q1) + v(m1) + v(m2)

<
v(m0) + v(m1) + (R− 1)(v(m0) + v(m1)) + Rv(q1)

v(q1) + v(m1) + (R− 1)(v(m0) + v(m1)) + Rv(q1)
(by Eq. (8))

=
Rv(m0) + Rv(m1) + Rv(q1)

Rv(m0) + (R− 1)v(m1) + (R + 1)v(q1)

<
Rv(m0) + Rv(m1)) + R(R− 1)(v(m0) + v(m1))

Rv(m0) + (R− 1)v(m1) + (R + 1)(R − 1)(v(m0) + v(m1))
(by Eq. (7))

=
R2v(m0) + R2v(m1)

(R2 + R− 1)v(m0)) + (R2 + R− 2)v(m1)

<
R3

2R3 + R2 − 4R + 1
(by Eq. (10))

< 1.23 < R.

In Case 3.2.3, CP transmits m2 and m3 at t + 2 and t + 3, respectively, and thus,

Vj = v(q1) + v(m0) + v(m2) + v(m3).

On the other hand, P (t, t+3, t+3) = {m0,m1,m2,m3}. Since q3 = q1 by the condition of Case 3.2.3,
P (t, t + 3, t + 4) = {q3,m0,m1,m2,m3} = {q1,m0,m1,m2,m3}. If OPT does not transmit m3 at
t + 4, by Lemma 3.3,

V ′

j ≤ V (t, t + 3, t + 3) = v(m0) + v(m1) + v(m2) + v(m3).

12

Hence,

V ′

j

Vj

≤ v(m0) + v(m1) + v(m2) + v(m3)

v(q1) + v(m0) + v(m2) + v(m3)
<

v(p) + v(m0) + v(m1) + v(m2) + v(m3)

v(q1) + v(m0) + v(m2) + v(m3)
.

If OPT transmits m3 at t + 4, by Lemma 3.4,

V ′

j ≤ V (t, t + 3, t + 4) = v(q1) + v(m0) + v(m1) + v(m2) + v(m3).

Then,

v(q1) + v(m0) + v(m1) + v(m2) + v(m3)

> R(v(m0) + v(m1) + v(m2)) + (R + 1)v(q1) (by Eq. (9))

> R2(v(m0) + v(m1)) + (R2 + R + 1)v(q1) (by Eq. (8))

> R2(v(m0) + v(m1)) + (R2 + R + 1)(R − 1)(v(m0) + v(m1)) (by Eq. (7))

= (R3 + R2 − 1)(v(m0) + v(m1)) (11)

Hence, we have

V ′

j

Vj

≤ v(q1) + v(m0) + v(m1) + v(m2) + v(m3)

v(q1) + v(m0) + v(m2) + v(m3)

<
(R3 + R2 − 1)(v(m0) + v(m1))

(R3 + R2 − 1)(v(m0) + v(m1)) − v(m1)
(by Eq. (11))

<
R4 + R3 −R

R4 + 2R3 − 4R + 1
(by Eq. (10))

< 1.23 < R.

Finally we discuss Case 3.2.1. Since CP transmits m2 and m3 at t + 2 and t + 3, respectively,

Vj = v(q1) + v(m0) + v(m2) + v(m3).

Since P (t, t + 4, t + 4) = {m0,m1,m2,m3},

V ′

j ≤ V (t, t + 4, t + 4) = v(m0) + v(m1) + v(m2) + v(m3)

by Lemma 3.3. In the same way as the proof of Case 3.2.2,

V ′

j

Vj

≤ v(m0) + v(m1) + v(m2) + v(m3)

v(q1) + v(m0) + v(m2) + v(m3)

<
v(q1) + v(m0) + v(m1) + v(m2) + v(m3)

v(q1) + v(m0) + v(m2) + v(m3)
< R.

References

[1] W. Aiello, Y. Mansour, S. Rajagopolan and A. Rosén, “Competitive queue policies for differ-
entiated services,” Journal of Algorithms, Vol. 55, No. 2, pp. 113–141, 2005.

13

[2] S. Albers, “On the influence of lookahead in competitive paging algorithms,” Algorithmica,
Vol. 18, No. 3, pp, 283–305, 1997.

[3] S. Albers, “A competitive analysis of the list update problem with lookahead,” Theoretical

Computer Science, Vol. 197, No. 1–2, pp, 95–109, 1998.

[4] N. Andelman, Y. Mansour and A. Zhu, “Competitive queueing policies for QoS switches,” In

Proc. of the 14th ACM-SIAM Symposium on Discrete Algorithms, pp. 761–770, 2003.

[5] Y. Bartal, F. Chin, M. Chrobak, S. Fung, W. Jawor, R. Lavi, J. Sgall and T. Tichý, “Online
competitive algorithms for maximizing weighted throughput of unit jobs,” In Proc. of the 21st

International Symposium on Theoretical Aspects of Computer Science, pp. 187–198, 2004.

[6] M. Bienkowski, M. Chrobak and L. Jeż, “Randomized competitive algorithms for online buffer
management in the adaptive adversary model,” Theoretical Computer Science, Vol. 412, No.
39, pp. 5121–5131, 2011.

[7] M. Bienkowski, M. Chrobak, C. Dürr, M. Hurand, A. Jeż, L. Jeż and G. Stachowiak, “Col-
lecting weighted items from a dynamic queue,” Algorithmica, Vol. 65, No. 1, pp. 60–94, 2013,

[8] M. Bienkowski, M. Chrobak, C. Dürr, M. Hurand, A. Jeż, L. Jeż and G. Stachowiak, “A
Φ-competitive algorithm for collecting items with increasing weights from a dynamic queue,”
Theoretical Computer Science, Vol. 475, pp. 92–102, 2013,

[9] F. Y. L. Chin, M. Chrobak, S. P. Y. Fung, W. Jawor, J. Sgall and T. Tichý, “Online competitive
algorithms for maximizing weighted throughput of unit jobs,” Journal of Discrete Algorithms,
Vol. 4, No. 2, pp. 255–276, 2006,

[10] M. Böhm, M. Chrobak, L. Jez, F. Li, J. Sgall and P. Veselý, “Online packet scheduling with
bounded delay and lookahead,” In Proc. of the 27th International Symposium on Algorithms

and Computation, pp. 21:1–21:13, 2016.

[11] A. Borodin and R. El-Yaniv, “Online computation and competitive analysis,” Cambridge Uni-

versity Press, 1998.

[12] D. Breslauer, “On competitive on-line paging with lookahead,” Theoretical Computer Science,
Vol.209, No. 1–2, pp, 365–375, 1998,

[13] F. Chin and S. Fung, “Online scheduling for partial job values: Does timesharing or random-
ization help?,” Algorithmica, Vol.37, pp, 149–164, 2003,

[14] M. Chrobak, W. Jawor, J. Sgall and T. Tichý, “Improved online algorithms for buffer man-
agement in QoS switches,” ACM Transactions on Algorithms, Vol.3, No.4, 2007.

[15] M. Englert and M. Westermann, “Considering suppressed packets improves buffer management
in quality of service switches,” SIAM Journal on Computing, Vol.41, No.5, pp, 1166–1192,
2012.

[16] M. Goldwasser, “A survey of buffer management policies for packet switches,” ACM SIGACT
News, Vol.41, No. 1, pp.100–128, 2010.

[17] E. F. Grove, “Online bin packing with lookahead,” In Proc. of the 6th ACM-SIAM Symposium

on Discrete Algorithms, pp. 430–436, 1995.

14

[18] B. Hajek, “On the competitiveness of online scheduling of unit-length packets with hard dead-
lines in slotted time,” In Proc. of the 35th Conference on Information Sciences and Systems,
pp. 434–438, 2001.

[19] L. Jeż, “Randomised buffer management with bounded delay against adaptive adversary,”
CoRR, abs/0907.2050, 2009.

[20] L. Jeż, “Randomized algorithm for agreeable deadlines packet scheduling,” In Proc. of the

27th Symposium on Theoretical Aspects of Computer Science, pp. 489–500, 2010.

[21] L. Jeż, F. Li, J. Sethuraman and C. Stein, “Online scheduling of packets with agreeable
deadlines,” ACM Transactions on Algorithms, Vol. 9, No. 1, 2012.

[22] L. Jeż, “A Universal randomized packet scheduling algorithm,” Algorithmica, Vol. 67, No. 4,
pp. 498–515, 2013.

[23] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber and M. Sviridenko, “Buffer
overflow management in QoS switches,” SIAM Journal on Computing,Vol. 33, No. 3, pp. 563–
583, 2004.

[24] A. Kesselman, Y. Mansour and R. van Stee, “Improved competitive guarantees for QoS buffer-
ing,” Algorithmica, Vol.43, No.1-2, pp. 63–80, 2005.

[25] F. Li, J. Sethuraman and C. Stein, “An optimal online algorithm for packet scheduling with
agreeable deadlines,” In Proc. of the 16th ACM-SIAM Symposium on Discrete Algorithms, pp.
801–802, 2005.

[26] F. Li, J. Sethuraman and C. Stein, “Better online buffer management,” In Proc. of the 18th

ACM-SIAM Symposium on Discrete Algorithms, pp. 199–208, 2007.

[27] R. Motwani, V. Saraswat and E. Torng, “Online scheduling with lookahead: Multipass assem-
bly lines,” INFORMS Journal on Computing,Vol. 10, No. 3, pp. 331–340, 1998.

[28] S. I. Nikolenko and K. Kogan, “Single and multiple buffer processing,” In Encyclopedia of

Algorithms, pp. 1–9, Springer, 2015.

[29] D. Sleator and R. Tarjan, “Amortized efficiency of list update and paging rules,” Communi-

cations of the ACM,Vol. 28, No. 2, pp. 202–208, 1985.

[30] A. Zhu, “Analysis of queueing policies in QoS switches,” Journal of Algorithms, Vol. 53, pp.
137–168, 2004.

15

