Skip to main content

Multi-objective Optimization of a Steering Linkage Using Alternative Objective Functions

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11656))

Abstract

This paper proposes comparing objective functions in multi-objective optimization of a rack-and-pinion steering linkage in which the optimum results can be affected by the types of objective functions especially when using evolutionary algorithms. The optimization of a steering linkage in the past studied minimizing a steering error and/or a turning radius which can be formulated as a single or multi-objective optimization problem. Steering error usually defines as the different angle between actual angle of steering wheels and the theoretical angle of the wheels according to the Ackerman’s principal. Alternatively, the steering error can be rearranged in form of a deviation of instantaneous center based on the same principal, but it still needs to clarify the advantage of using different steering error measures. As a result, it is our attention to study the effect of objective functions to the optimum results on multi-objective optimization of a rack-and-pinion steering linkage. The objective functions are assigned to simultaneously minimize a steering error (dimensionless angle or length) and a turning radius. The design variables are linkage dimensions. The design problem is solved by improving the hybridization of real-code population-based incremental learning and differential evolution (RPBIL-DE). The comparison shows that the alternative objective function can compare with the traditional objective, which leads to effective design of rack-and-pinion steering linkages.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hanzaki, A.R., Rao, P.V.M., Saha, S.K.: Kinematic and sensitivity analysis and optimization of planar rack-and-pinion steering linkages. Mech. Mach. Theory 44, 42–56 (2009)

    Article  Google Scholar 

  2. Simionescu, P.A., Beale, D.: Optimum synthesis of the four-bar function generator in its symmetric embodiment: the Ackermann steering linkage. Mech. Mach. Theory 37, 1487–1504 (2002)

    Article  Google Scholar 

  3. EttefaghM, M., Javash, M.S.: Optimal synthesis of four-bar steering mechanism using AIS and genetic algorithms. J. Mech. Sci. Technol. 28, 2351–2362 (2014)

    Article  Google Scholar 

  4. Zhao, J.S., Liu, X., Feng, Z.J., Dai, J.S.: Design of an Ackermann-type steering mechanism. J. Mech. Eng. Sci. 227, 2549–2562 (2013)

    Article  Google Scholar 

  5. Peñuñuri, F., Peón-Escalante, R., Villanueva, C., Pech-Oy, D.: Synthesis of mechanisms for single and hybrid tasks using differential evolution. Mech. Mach. Theory 46(10), 1335–1349 (2011)

    Article  Google Scholar 

  6. Simionescu, P.A., Smith, M.R., Tempea, I.: Synthesis and analysis of the two loop translational input steering mechanism. Mech. Mach. Theory 35(7), 927–943 (2000)

    Article  Google Scholar 

  7. Carcaterra, A.: D’Ambrogio: a function generating differential mechanism for an exact solution of the steering problem. Mech. Mach. Theory 33(5), 535–549 (1998)

    Article  Google Scholar 

  8. Simionescu, P.A., Smith, M.R.: Applications of Watt II function generator cognates. Mech. Mach. Theory 35, 1535–1549 (2000)

    Article  Google Scholar 

  9. Simionescu, P.A., Smith, M.R.: Four- and six-bar function cognates and over constrained mechanism. Mech. Mach. Theory 36, 913–924 (2001)

    Article  Google Scholar 

  10. Zarak, C.E., Townsend, M.A.: Optimal design of rack-and-pinion steering linkages. J. Mech. Des. 105, 220–226 (1983)

    Google Scholar 

  11. Felzien, M.L., Cronin, D.L.: Steering error optimization of the McPherson strut automotive front suspension. Mech. Mach. Theory 20, 17–26 (1985)

    Article  Google Scholar 

  12. Simionescu, P.A., Smith, M.R.: Initial estimates in the design of rack-and-pinion steering linkages. J. Mech. Des. 122, 194–200 (2000)

    Article  Google Scholar 

  13. Zhou, B., Li, D., Yang, F.: Optimization design of steering linkage in independent suspension based on genetic algorithm. In: Proceedings of Computer-Aided Industrial Design & Conceptual Design, Wenzhou, China, pp. 45–48 (2009)

    Google Scholar 

  14. Kim, S.I., Kim, Y.Y.: Topology optimization of planar linkage mechanisms. Int. J. Numer. Methods Eng. 98, 265–286 (2014)

    Article  Google Scholar 

  15. Sleesongsom, S., Bureerat, S.: Multiobjective optimization of a steering linkage. J. Mech. Sci. Technol. 30, 3681–3691 (2016)

    Article  Google Scholar 

  16. Sleesongsom, S., Bureerat, S.: Optimization of steering linkage including the effect of McPherson strut front suspension. In: Tan, Y., Shi, Y., Tang, Q. (eds.) ICSI 2018. LNCS, vol. 10941, pp. 612–623. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93815-8_58

    Chapter  Google Scholar 

  17. Wang, L., Zhang, X., Zhou, Y.: An effective approach for kinematic reliability analysis of steering mechanisms. Reliab. Eng. Syst. Safe. 180, 62–76 (2018)

    Article  Google Scholar 

  18. Zhao, W.Z., Wang, Y.Q., Wang, C.Y.: Multidisciplinary optimization of electric-wheel vehicle integrated chassis system based on steady endurance performance. J. Clean. Prod. 186, 640–651 (2018)

    Article  Google Scholar 

  19. Showers, A., Lee, H.H.: Design of the steering system of an SELU Mini Baja car. Int. J. Eng. Res. Tech. 2(10), 2396–2400 (2013)

    Google Scholar 

  20. Pholdee, N., Bureerat, S.: Hybridisation of real-code population-based incremental learning and differential evolution for multiobjective design of trusses. Inform. Sci. 223, 136–152 (2013)

    Article  MathSciNet  Google Scholar 

  21. Sleesongsom, S., Bureerat, S.: Topology optimisation using MPBILs and multi-grid ground element. Appl. Sci. 8, 271 (2018)

    Article  Google Scholar 

  22. Sleesongsom, S.: Multiobjective optimization with even Pareto filter. In: Proceedings of Natural Computation, Jinan, China, pp. 92–96 (2008)

    Google Scholar 

Download references

Acknowledgement

The authors are grateful for the financial support provided by King Mongkut’s Institute of Technology Ladkrabang, the Thailand Research Fund (RTA6180010), and the Post-doctoral Program from Research Affairs, Graduate School, KhonKaen University (58225).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suwin Sleesongsom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sleesongsom, S., Bureerat, S. (2019). Multi-objective Optimization of a Steering Linkage Using Alternative Objective Functions. In: Tan, Y., Shi, Y., Niu, B. (eds) Advances in Swarm Intelligence. ICSI 2019. Lecture Notes in Computer Science(), vol 11656. Springer, Cham. https://doi.org/10.1007/978-3-030-26354-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26354-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26353-9

  • Online ISBN: 978-3-030-26354-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics