Skip to main content

Cooperation-Based Gene Regulatory Network for Target Entrapment

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11655))

Abstract

Multi-agent systems are applied to a variety of scenarios, in which target entrapment has become a primary research area in recent decades. In order to solve the problem of intelligent swarm behavior control, the hierarchical gene regulation network (H-GRN) is proposed. However, the networks in H-GRN rely solely on target information for behavioral control, and interaction with surrounding partners only involves avoiding physical collisions. To benefit from the cooperation with partners, we design a cooperation-based gene regulatory network (C-GRN) for target entrapment. Following the hierarchical gene regulatory network, we use the agent’s own sensor to get the companion information, and add information to the network by controlling changes in the corresponding protein concentration. In addition, a self-organizing obstacle avoidance control method is also proposed. A series of empirical evaluations index comparison show that C-GRN can cooperate with partners. The experimental results indicate that the total time to complete task and average thickness of the target’s encirclement is obviously optimized in a simulation experiment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baxter, J., Burke, E., Garibaldi, J., et al.: Multirobot search and rescue: a potential field based approach. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 9–16 (2007)

    Chapter  Google Scholar 

  2. Bakhshipour, M., Jabbari Ghadi, M., Namdari, F.: Swarm robotics search & rescue: a novel artificial intelligence-inspired optimization approach. Appl. Soft Comput. 57, 708–726 (2017). 2017:S1568494617301072

    Article  Google Scholar 

  3. Martinoli, A., Easton, K., Agassounon, W.: Modeling swarm robotic systems: a case study in collaborative distributed manipulation. Int. J. Robot. Res. 23(4), 415–436 (2004)

    Article  Google Scholar 

  4. Chen, J., Gauci, M., Li, W., et al.: Occlusion-based cooperative transport with a swarm of miniature mobile robots. IEEE Trans. Robot. 31(2), 307–321 (2017)

    Article  Google Scholar 

  5. Madhavan, R., Fregene, K., Parker, L.E.: Distributed heterogeneous outdoor multi-robot localization. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation, pp. 374–381 (2002)

    Google Scholar 

  6. Arnold, R.D., Yamaguchi, H., Tanaka, T.: Search and rescue with autonomous flying robots through behavior-based cooperative intelligence. J. Int. Humanit. Action 3(1), 18 (2018)

    Article  Google Scholar 

  7. Dierks, T., Jagannathan, S.: Neural network output feedback control of robot formations. IEEE Trans. Syst. Man Cybern. Part B Cybern. 40(2), 383–399 (2010)

    Article  Google Scholar 

  8. Arezoumand, R., Mashohor, S., Marhaban, M.H.: Efficient terrain coverage for deploying wireless sensor nodes on multi-robot system. Intell. Serv. Robot. 9(2), 163–175 (2016)

    Article  Google Scholar 

  9. Loria, A., Dasdemir, J., Jarquinalvarez, N.: LeaderCFollower formation and tracking control of mobile robots along straight paths. IEEE Trans. Control Syst. Technol. 24(2), 727–732 (2016)

    Article  Google Scholar 

  10. Dingjiang, Z., Zijian, W., Mac, S.: Agile coordination and assistive collision avoidance for quadrotor swarms using virtual structures. IEEE Trans. Robot. 34, 1–8 (2018)

    Article  Google Scholar 

  11. Doctor, S., Venayagamoorthy, G.K., Gudise, V.G.: Optimal PSO for collective robotic search applications. In: IEEE Congress on Evolutionary Computation, vol. 2, pp. 1390–1395. IEEE (2004)

    Google Scholar 

  12. Scharf, D.P., Hadaegh, F.Y., Ploen, S.R.: A survey of spacecraft formation flying guidance and control. Part II: control. In: American Control Conference, vol. 4. pp. 2976–2985. IEEE (2004)

    Google Scholar 

  13. Beard, R.W., Lawton, J., Hadaegh, F.Y., et al.: A coordination architecture for spacecraft formation control. IEEE Trans. Control Syst. Technol. 9(6), 777–790 (2001)

    Article  Google Scholar 

  14. Yeom, K.: Bio-inspired automatic shape formation for swarms of self-reconfigurable modular robots. In: IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), pp. 469–476 (2010)

    Google Scholar 

  15. Kondacs, A.: Biologically-inspired self-assembly of two-dimensional shapes using global-to-local compilation. In: International Joint Conference on Artificial Intelligence, pp. 633–638 (2003)

    Google Scholar 

  16. Nagpal, R., Kondacs, A., Chang, C.: Programming methodology for biologically-inspired self-assembling systems. In: AAAI Spring Symposium on Computational Synthesis, pp. 173–180 (2003)

    Google Scholar 

  17. Schroeder, A.M., Kumar, M.: Design of decentralized chemotactic control law for area coverage using swarm of mobile robots. IEEE Trans. 261, pp. 189–192 (2016)

    Google Scholar 

  18. Lee, I.-H., Cho, U.-I.: Pattern formations with turing and HOPF oscillating pattern in a discrete reaction-diffusion system. Bull. Korean Chem. Soc. 21, 1213–1216 (2000)

    Google Scholar 

  19. Jin, Y., Meng, Y.: Morphogenetic robotics: an emerging new field in developmental robotics. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 41(2), 145–160 (2011)

    Article  Google Scholar 

  20. Taylor, T., Ottery, P., Hallam, J.: Pattern formation for multi-robot applications: robust, self-repairing systems inspired by genetic regulatory networks and cellular self-organisation. Informatics Research Report (2006)

    Google Scholar 

  21. Guo, H., Meng, Y., Jin, Y.: A cellular mechanism for multi-robot construction via evolutionary multi-objective optimization of a gene regulatory network. BioSystems 98(3), 193–203 (2009)

    Article  Google Scholar 

  22. Guo, H., Jin, Y., Meng, Y.: A morphogenetic framework for self-organized multirobot pattern formation and boundary coverage. ACM Trans. Auton. Adapt. Syst. 7(1), 1–23 (2012)

    Article  Google Scholar 

  23. Werfel, J.: Biologically realistic primitives for engineered morphogenesis. In: Dorigo, M., et al. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 131–142. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15461-4_12

    Chapter  Google Scholar 

  24. Jin, Y., Guo, H., Meng, Y.: A hierarchical gene regulatory network for adaptive multirobot pattern formation. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(3), 805 (2012). A Publication of the IEEE Systems Man & Cybernetics Society

    Article  Google Scholar 

  25. Oh, H., Jin, Y.: Adaptive swarm robot region coverage using gene regulatory networks. In: Mistry, M., Leonardis, A., Witkowski, M., Melhuish, C. (eds.) TAROS 2014. LNCS (LNAI), vol. 8717, pp. 197–208. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10401-0_18

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 61872378, and 91648204, in part by the National Defense Technology Innovation Special Zone Projects

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomin Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, M. et al. (2019). Cooperation-Based Gene Regulatory Network for Target Entrapment. In: Tan, Y., Shi, Y., Niu, B. (eds) Advances in Swarm Intelligence. ICSI 2019. Lecture Notes in Computer Science(), vol 11655. Springer, Cham. https://doi.org/10.1007/978-3-030-26369-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26369-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26368-3

  • Online ISBN: 978-3-030-26369-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics