Skip to main content

Learning Accurate LSTM Models of Business Processes

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11675))

Abstract

Deep learning techniques have recently found applications in the field of predictive business process monitoring. These techniques allow us to predict, among other things, what will be the next events in a case, when will they occur, and which resources will trigger them. They also allow us to generate entire execution traces of a business process, or even entire event logs, which opens up the possibility of using such models for process simulation. This paper addresses the question of how to use deep learning techniques to train accurate models of business process behavior from event logs. The paper proposes an approach to train recurrent neural networks with Long-Short-Term Memory (LSTM) architecture in order to predict sequences of next events, their timestamp, and their associated resource pools. An experimental evaluation on real-life event logs shows that the proposed approach outperforms previously proposed LSTM architectures targeted at this problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.

  2. 2.

    https://www.tensorflow.org/guide/feature_columns.

  3. 3.

    https://doi.org/10.17632/39bp3vv62t.1.

  4. 4.

    https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.

  5. 5.

    https://doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07.

  6. 6.

    https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1.

References

  1. Breuker, D., Matzner, M., Delfmann, P., Becker, J.: Comprehensible predictive models for business processes. MIS Q. 40(4), 1009–1034 (2016)

    Article  Google Scholar 

  2. Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017)

    Article  Google Scholar 

  3. Di Francescomarino, C., Ghidini, C., Maggi, F.M., Petrucci, G., Yeshchenko, A.: An eye into the future: leveraging a-priori knowledge in predictive business process monitoring. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 252–268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65000-5_15

    Chapter  Google Scholar 

  4. Hao, X., Zhang, G., Ma, S.: Deep learning. Int. J. Semant. Comput. 10(03), 417–439 (2016). https://doi.org/10.1142/S1793351X16500045

    Article  Google Scholar 

  5. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  6. Lin, L., Wen, L., Wang, J.: MM-Pred: a deep predictive model for multi-attribute event sequence. In: Proceedings of the 2019 SIAM International Conference on Data Mining, pp. 118–126. Society for Industrial and Applied Mathematics (2019). https://doi.org/10.1137/1.9781611975673.14

    Chapter  Google Scholar 

  7. Mehdiyev, N., Evermann, J., Fettke, P.: A multi-stage deep learning approach for business process event prediction. In: 19th Conference on Business Informatics (CBI), vol. 01, pp. 119–128. IEEE (2017). https://doi.org/10.1109/CBI.2017.46

  8. Nolle, T., Seeliger, A., Mühlhäuser, M.: BINet: multivariate business process anomaly detection using deep learning. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 271–287. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_16

    Chapter  MATH  Google Scholar 

  9. Polato, M., Sperduti, A., Burattin, A., Leoni, M.D.: Time and activity sequence prediction of business process instances. Computing 100(9), 1005–1031 (2018)

    Article  MathSciNet  Google Scholar 

  10. Schmidhuber, J.: Deep Learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015). https://doi.org/10.1016/j.neunet.2014.09.003

    Article  Google Scholar 

  11. Song, M., van der Aalst, W.M.: Towards comprehensive support for organizational mining. Decis. Support Syst. 46(1), 300–317 (2008). https://doi.org/10.1016/j.dss.2008.07.002

    Article  Google Scholar 

  12. Tax, N., Teinemaa, I., van Zelst, S.J.: An interdisciplinary comparison of sequence modeling methods for next-element prediction. CoRR abs/1811.00062 (2018)

    Google Scholar 

  13. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30

    Chapter  Google Scholar 

  14. Teinemaa, I., Leontjeva, A., Masing, K.O.: BPIC 2015: diagnostics of building permit application process in Dutch municipalities. BPI Challenge Report 72 (2015)

    Google Scholar 

Download references

Acknowledgments

This research is funded by the Estonian Research Council (IUT20-55) and the European Research Council (Project PIX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Camargo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Camargo, M., Dumas, M., González-Rojas, O. (2019). Learning Accurate LSTM Models of Business Processes. In: Hildebrandt, T., van Dongen, B., Röglinger, M., Mendling, J. (eds) Business Process Management. BPM 2019. Lecture Notes in Computer Science(), vol 11675. Springer, Cham. https://doi.org/10.1007/978-3-030-26619-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26619-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26618-9

  • Online ISBN: 978-3-030-26619-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics