
Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-839501

Nusrat Jahan Lisa, Annett Ungethüm, Dirk Habich, Wolfgang Lehner, Nguyen Duy Anh
Tuan, Akash Kumar

FPGA vs. SIMD: Comparison for Main Memory-Based Fast Column Scan

Erstveröffentlichung in / First published in:

Data Management Technologies and Applications: 7th International Conference. Porto,
26.-28.07.2018. Springer, S. 116-140. ISBN 978-3-030-26636-3.

DOI: http://dx.doi.org/10.1007/978-3-030-26636-3_6

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-839501
http://dx.doi.org/10.1007/978-3-030-26636-3_6

FPGA vs. SIMD: Comparison for Main
Memory-Based Fast Column Scan

Nusrat Jahan Lisa1, Annett Ungethüm1, Dirk Habich1(B), Wolfgang Lehner1,
Nguyen Duy Anh Tuan2, and Akash Kumar2

1 Database Systems Group, Technische Universität Dresden, Dresden, Germany
{nusratjahan.lisa,annett.ungethum,dirk.habich,

wolfgang.lehner}@tu-dresden.de
2 Processor Design Group, Technische Universität Dresden, Dresden, Germany

{nguyenduyanh.tuan,akash.kumar}@tu-dresden.de

Abstract. The ever-increasing growth of data demands reliable data-
base system with high-throughput and low-latency. Main memory-based
column store database systems are state-of-the-art on this perspective,
whereby data (values) in relational tables are organized by columns
rather than by rows. In such systems, a full column scan is a funda-
mental key operation and thus, the optimization of the key operation is
very crucial. This leads to have compact storage layout based fast col-
umn scan techniques through intra-value parallelism. For this reason, we
investigated on different well-known fast column scan techniques using
SIMD (Single Instruction Multiple Data) vectorization as well as using
Field Programmable Gate Arrays (FPGA). Moreover, we present selec-
tive results of our exhaustive evaluation. Based on this evaluation, we find
out the best column scan technique as per implementation mechanism–
FPGA and SIMD. Finally, we conclude this paper via mentioning some
lessons learned for our ongoing research activities.

Keywords: Column stores · Scan operation · Vectorization · FPGA ·
Pipeline

1 Introduction

The big data world challenging continuously on how to manage analytical com-
plex database queries more efficiently along with high-throughput and low-
latency. This leads to have fast database architecture. Therefore, to speedup
the performance, database systems shifted from disk to main memory. Because
storing as well as processing all data in main memory is faster than data stored
on disk or on a flash drive [1,4]. Although it is important that all data must fit
in main memory. However, main memories are still multi-gigabyte, while disk
can be multi-terabyte. Additionally, organizing relational tables in main memory
by column rather than by row effects the query performance positively as data
stored in uniform pattern [1,20]. Thus, such database systems are called main

Final edited form was published in "Data Management Technologies and Applications: 7th International Conference.
Porto 2018", S. 116-140. ISBN: 978-3-030-26636-3

https://doi.org/10.1007/978-3-030-26636-3_6

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26636-3_6&domain=pdf

memory column store system. In order to increase the performance of analytical
queries, two key aspects play an important role in this so-called main memory
column store database systems. On the one hand, compressed storage layout is
easily adaptable to reduce the amount of data [1,9,27]. On the other hand, main
memory column stores are also smoothly adaptable for novel hardware features
like vectorization using SIMD extensions [17,25], GPUs [8], FPGAs [19,22] or
non-volatile main memory [16].

One of the primary operation in such system is column scan [7,13,23],
because analytical queries usually compute aggregations over full or large parts
of columns. Thus, the optimization of the scan primitive is very crucial [7,13,23].
Generally, the task of a column scan is to compare each entry of a given col-
umn against a given predicate and to return all matching entries. To efficiently
realize this column scan, Lamport et al. [11] came up with the initial idea of
intra-data processing on single processor word. Later, Li et al. [13] proposed
a novel technique called BitWeaving which exploits the intra-instruction paral-
lelism at the bit-level of modern processors. Intra-instruction parallelism means
that multiple column entries are processed by a single instruction at once. In
these approaches, multiple encoded column values are packed either horizontally
or vertically into processor words providing high performance when fetching the
entire column value [11,13]. Moreover, on these approaches query processing are
happening directly on the packed processor words without unpacking the data
items. Therefore, as the authors have shown, the more column values are packed
in a processor word, the better scan performance [13].

Unfortunately, the length of processor words is currently fixed to 64-bit in
common processors, which limits the performance of the intra-instruction paral-
lelism based column scans. To overcome this limitation and to increase the intra-
instruction parallelism, there exists two hardware-oriented opportunities. On the
one hand, Single Instruction Multiple Data (SIMD) instruction set extensions
such as Intel’s SSE (Streaming SIMD Extensions) and AVX (Advanced Vector
Extensions) have been available in modern processors for several years. SIMD
instructions apply one operation to multiple elements of so-called vector registers
at once which reduce the instruction calls. The size of the vector registers ranges
from 128 (Intel SSE 4.2) to 512-bit (Intel AVX-512), whereby these registers
can be used instead of regular processor words. On the other hand, Field Pro-
grammable Gate Arrays (FPGAs) are an interesting alternative which provide
a great deal of flexibility. Because it allows to design specialized configurable
hardware components with arbitrary processor word sizes.

Our Contribution and Outline: This paper is the extended version of our
paper [14], whereby we investigate both hardware-oriented opportunities using
different types of column scan mechanism. Based on that, we make the following
contributions.

1. In Sect. 2, we briefly recap the fast column scan techniques as foundation for
our work.

2. The implementation using SIMD vector registers is discussed in Sect. 3, while
Sect. 4 covers our FPGA implementation along with selective results of our

Final edited form was published in "Data Management Technologies and Applications: 7th International Conference.
Porto 2018", S. 116-140. ISBN: 978-3-030-26636-3

https://doi.org/10.1007/978-3-030-26636-3_6

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

(c) BitWeaving/H Storage Layout

Delimiter Bit

H1 0 0 0 1 0 0 1 1C1 1 0 0 1

C2 3 0 1 1

C3 6 1 1 0

C4 4 1 0 0

C5 1 0 0 1

C6 4 1 0 0

C7 6 1 1 0

C8 6 1 1 0

INT
Column Codes
(Length 3 Bit)

(a)

V1 0 0 1 1 0 1 1 1

H3 0 0 0 1 0 1 0 0

H2 0 1 1 0 0 1 0 0

H4 0 1 1 0 0 1 1 0

V3 1 1 0 0 1 0 0 0

V2 0 1 1 0 0 0 1 1

(d) BitWeaving/V Storage Layout

(b) Naïve Storage Layout

N2 0 0 1 1 0 1 0 0

N1 0 0 0 0 1 0 1 1

N3 0 0 0 0 1 1 0 0

N4 0 0 1 1 0 1 1 0

Bit Padding

Fig. 1. Storage layout example with (a) 8 integer values with their 3-bit codes, (b)
data representation in Näıve layout, (c) data representation in BitWeaving/H layout
and (d) data representation in BitWeaving/V layout.

exhaustive evaluation. In particular, we separately evaluate each implemen-
tation followed by lessons learned summaries.

3. Finally, we conclude the paper with related work in Sect. 5 and a short con-
clusion in Sect. 6.

2 Column Scan

Column-oriented database management systems store relational data by columns
rather than by rows [4,6]. The advantages are (i) that each column is separately
considered and (ii) that the similarity of adjacent column values is preserved.
Based on both advantages, the opportunity for compactness and the ability to
process multiple column values at once is increased. Thus, the efficient realization
of a column scan is an active research topic, whereby each approach consists
of two components: (i) storage layout for column values and (ii) scan operation
(predicate evaluation) on the proposed storage layout. In this paper, we compare
two well-established approaches on two different hardware platforms.

2.1 Näıve

The first column scan technique is the Näıve approach, where each column is
encoded with a fixed-length order-preserving code as illustrated in Fig. 1(a).
The types of all column values including numeric and string types are encoded
as unsigned integer codes [3,9]. The term column code refers to the encoded
column values. To process multiple column codes in a single processor word
during the scan operation, a intra-value parallelism-based compact storage layout
is required. Lamport et al. [11] introduced a first approach for this. As shown in
Fig. 1(b), column codes are continuously stored horizontally in processor words
Ni. As stored codes are fixed in length, the extra unused bits in the processor
word are padded with zeros. In our example, we use 8-bit processor words N1 to
N4, such that two 3-bit column codes fit into one processor word including 2-bit
padding per processor word.

Final edited form was published in "Data Management Technologies and Applications: 7th International Conference.
Porto 2018", S. 116-140. ISBN: 978-3-030-26636-3

https://doi.org/10.1007/978-3-030-26636-3_6

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Step 1: Extarct and Load
N1

0 0 0 0 1 0 1 1

Given Predicate
Ci 3? Initial Step: Load Predicate Constant 3, Q1 Q1 0 0 0 0 0 0 1 1

Step 3: If comparison satisfy then increase count value by one

0 0 0 0 0 0 0 1

Q1

0 0 0 0 0 0 1 1

Step 2: Compare equality word by word

Count
N2 0 0 1 1 0 1 0 0

N3 0 0 0 0 1 1 0 0

N4 0 0 1 1 0 1 1 0

Step 5: Repeat
these steps (1 4)
for all words
(N2 to N4)

N1

0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1

Q1

0 0 0 0 0 0 1 1
Step 4: Repeat these

steps for the next
code of N1

Count

Fig. 2. Equality predicate evaluation using Näıve/S technique with extract-load-
compare each column code.

During Predicate Evaluation, the task of a column scan is to compare each
column code with a constant C and to output the number of Count indicat-
ing how many times the corresponding code satisfies the comparison condition.
The predicate evaluation on Näıve layout can be done in two ways. Firstly, we
can evaluate any predicate with simply extract, load and evaluate each (single)
code with the comparison condition consecutively, without exploiting code-level
parallelism. We named this technique as Näıve/S. Figure 2 describes the equal-
ity check in an exemplary way. The input from Fig. 1(b) is tested against the
condition Ci = 3. The predicate evaluation steps are as follows:

Initially: Load the predicate constant 3 in word Q1.
Step 1: Extract one code from N1 and load in a temporary word.
Step 2: Check equality word-wise between Q1 and temporary word.
Step 3: If comparison satisfies then increase the value of Count by one.
Step 4: Repeat Steps (1 to 3) for the next column code of N1.
Step 5: Repeat Steps (1 to 4) for the rest of words N2 to N4.

Secondly, we can evaluate any predicate directly on the Näıve layout with
exploiting code-level parallelism. The main advantage of such technique is pred-
icate evaluation is done without decoupling the column codes from a word. We
named this technique as Näıve/M. Figure 3 illustrated this technique in an exem-
plary way for the same input and test condition like Näıve/S. The detail steps
are described as follows,

Initially: Load the Näıve layout of predicate constant 3 in Q1.
Step 1: Check the equality bit-wise of each code between N1 and Q1 in parallel.

There are 1-bit Si flag registers for each code of Näıve word. For this example
(Fig. 3), each word has two (S1 and S2) flag registers. If the condition satisfies
then set one to Si flags, otherwise set zero.

Step 2: Perform addition between S1 and S2, and store the result in Count word.
Step 3: Repeat Step 1 and Step 2 for the rest of words N2 to N4 in pipeline

manner by overlapping instructions.

In both examples (Figs. 2 and 3), only the second code (C2) satisfies the pred-
icate, so the resulting Count value is one. In order to accelerate column scan,

Final edited form was published in "Data Management Technologies and Applications: 7th International Conference.
Porto 2018", S. 116-140. ISBN: 978-3-030-26636-3

https://doi.org/10.1007/978-3-030-26636-3_6

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Fig. 3. Equality predicate evaluation using Näıve/M technique with directly evaluate
on compact words.

Näıve/M technique is good choice than Näıve/S for two reason, i) Näıve/M tech-
nique evaluate predicate directly on the compact word, ii) it is using instruction
overlapping mechanism which reduce the number of clock cycles significantly.
However, Näıve/M technique is difficult to implement on common CPUs using
64-bit processor word, as common 64-bit word do not support intra-instruction
parallelism.

2.2 BitWeaving

Our second considered column scan technique is called BitWeaving [13]. As illus-
trated in Fig. 1(a), BitWeaving also takes each column separately and encodes
the column codes using a fixed-length order-preserving code (lightweight data
compression [1,5]), whereby the types of all values including numeric and string
types are encoded as an unsigned integer code [13]. To accelerate column scans,
BitWeaving technique introduced two types of storage layouts along with an
arithmetic framework instead of comparisons for predicate evaluations: BitWeav-
ing/H and BitWeaving/V [13].

BitWeaving/H. In the storage layout of BitWeaving/H, the column codes of
each column are viewed at the bit-level and the bits are aligned in memory in
a way that enables the exploitation of the intra-cycle (intra-instruction) paral-
lelism for the predicate evaluation. As illustrated in Fig. 1(c), column codes are
continuously stored in processor words Hi, where the most significant bit of every
code is used as a delimiter bit between adjacent column codes. In our example,
we use 8-bit processor words H1 to H4, such that two 3-bit column codes fit
into one processor word including one delimiter bit per code. The delimiter bit
is used later to store the result of a predicate evaluation query.

To efficiently perform column scans using the BitWeaving/H storage layout,
Li et al. [13] proposed an arithmetic framework to directly execute predicate

Final edited form was published in "Data Management Technologies and Applications: 7th International Conference.
Porto 2018", S. 116-140. ISBN: 978-3-030-26636-3

https://doi.org/10.1007/978-3-030-26636-3_6

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Step 1:
Exclusive OR

H1 0 0 0 1 0 0 1 1

Step 2:
Masking1
(Addition)

Given Predicate
Ci 3? Initial Step: BitWeaving/H Layout of Predicate Constant 3, Q1

Step 3:
Masking2

(Exclusive OR)

Step 4: Sum all the
Delimiter bits

H2 0 1 1 0 0 1 0 0 H3 0 0 0 1 0 1 0 0 H4 0 1 1 0 0 1 1 0

Q1 0 0 1 1 0 0 1 1

Q1 0 0 1 1 0 0 1 1 Q1 0 0 1 1 0 0 1 1 Q1 0 0 1 1 0 0 1 1 Q1 0 0 1 1 0 0 1 1

0 0 1 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 0 1 0 1 0 1 0 1

M1 0 1 1 1 0 1 1 1 M1 0 1 1 1 0 1 1 1 M1 0 1 1 1 0 1 1 1 M1 0 1 1 1 0 1 1 1

1 0 0 1 0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 0 1 1 0 0

M2 1 0 0 0 1 0 0 0 M2 1 0 0 0 1 0 0 0 M2 1 0 0 0 1 0 0 0 M2 1 0 0 0 1 0 0 0

0 0 0 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 1 0 0 1 0 0 0 1 0 0

0 + 1 + 0 + 0 + 0 + 0 + 0 + 0 1

Fig. 4. Equality predicate evaluation using BitWeaving/H technique [13].

evaluations on the compressed data. There are two main advantages: (i) predi-
cate evaluation is done without decompression and (ii) multiple column codes are
simultaneously processed within a single processor word using full-word instruc-
tions (intra-instruction parallelism) [13]. The supported predicate evaluations
include equality, inequality, and range checks, whereby for each evaluation a
function consisting of arithmetical and logical operations is defined [13]. Figure 4
highlights the equality check in an exemplary way. The input from Fig. 1(c) is
tested against the condition Ci = 3. Then, the predicate evaluation steps are as
follows:

Initially: Load the BitWeaving/H layout of predicate constant 3 in Q1.
Step 1: Exclusive-OR operations between the words (H1,H2,H3,H4) and Q1 are

performed.
Step 2: Masking1 operation (Addition) between the intermediate results of Step

1 and the M1 mask register (where each bit of M1 is set to one, except the
delimiter bits) is performed.

Step 3: Masking2 operation (Exclusive-OR) between the intermediate results of
Step 2 and the M2 mask register (where only delimiter bits of M2 is set to
one and rest of all bits are set to zero) is performed.

Step 4: Add delimiter bits to achieve the total count (final result).

The output is a result bit vector, with one bit per input code that indicates if
the code matches the predicate on the column. In the example of Fig. 4, only
the second code (C2) satisfies the predicate which is visible in the resulting bit
vector.

BitWeaving/V. In BitWeaving/V, the codes are stored vertically across sev-
eral processor words [13], such that one word contains one bit of several codes.
Figure 1(d) shows how the column codes from Fig. 1(a) are stored in the BitWeav-
ing/V layout. The words Vi are 8-bit long. The bits of the first number C1 are
stored at the first position of each word, the bits of the second number are stored
at the second position, and so on. This way, eight 3-bit codes can be stored across
three 8-bit words.

Final edited form was published in "Data Management Technologies and Applications: 7th International Conference.
Porto 2018", S. 116-140. ISBN: 978-3-030-26636-3

https://doi.org/10.1007/978-3-030-26636-3_6

6

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Q1 0 0 0 0 0 0 0 0

Q3 1 1 1 1 1 1 1 1

Q2 1 1 1 1 1 1 1 1

Step 1: Perform XOR
Operation between Vi and Qi

V1 0 0 1 1 0 1 1 1

Q1 0 0 0 0 0 0 0 0

V2 0 1 1 0 0 0 1 1

Q2 1 1 1 1 1 1 1 1

V3 1 1 0 0 1 0 0 0

Q3 1 1 1 1 1 1 1 1

X1 0 0 1 1 0 1 1 1

X2 1 0 0 1 1 1 0 0
1 0 1 1 1 1 1 1

X3 0 0 1 1 0 1 1 1

Step 2: Perform OR
Operation Between all Xi Step 3: Predicate satistied for

this column code (C2)

Initial Step: BitWeaving/V Layout of
Predeicate Constant 3

Given Predicate
Ci 3 ?

XOR

XOR

XOR

OR

Fig. 5. Equality predicate evaluation using BitWeaving/V technique [13].

To evaluate predicate in this layout, we consider the restriction operation
Equality. However, any kind of (restriction type) predicate evaluation can be
perform in this layout. Figure 5 illustrated the Equality check predicate evalu-
ation for BitWeaving/V in a exemplary way. In the example, we evaluate the
column codes Ci for an equality with 3. The necessary steps are:

Initially: Predicate constant 3 is loaded as BitWeaving/V layout (Q1, Q2, Q3).
Step 1: XOR operations are performed between BitWeaving/V layout based

words and predicate constant as follows,

X1 = V1 ⊕ Q1

X2 = V2 ⊕ Q2

X3 = V3 ⊕ Q3

Step 2: Performed bitwise OR operations between (X1,X2,X3).
Step 3: In the result word, there is only one position set to 0. That means, the

example condition is satisfied for only one column code and the total count
value is one.

2.3 Summary

With the increasing demand for in-memory data processing, there is a critical
need for fast scan operations [7,13,23]. The Näıve/M and BitWeaving techniques
addresses this need by packing multiple codes into processor words and apply-
ing full-word instructions for predicate evaluations. As shown in [13], BitWeav-
ing techniques achieved significant improvement over Näıve/S due to its intra-
instruction parallelism mechanism. However, they do not consider Näıve/M tech-
nique. That defines explicitly the more codes are packed in processor words the
better performance can be achieved. Unfortunately, processors words in all com-
mon CPUs are currently fixed to 64-bit in length. To further speedup BitWeaving
or Näıve/M, larger processor words would be beneficial. To realize larger pro-
cessor words, we have two hardware-oriented alternatives: (i) vector registers of
SIMD extensions or (ii) Field Programmable Gate Arrays (FPGAs). We consider
BitWeaving and Näıve/M approaches for both hardware-oriented alternatives.
Both alternatives are discussed in the following sections in detail.

Final edited form was published in "Data Management Technologies and Applications: 7th International Conference.
Porto 2018", S. 116-140. ISBN: 978-3-030-26636-3

https://doi.org/10.1007/978-3-030-26636-3_6

7

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

3 SIMD-Implementation

One hardware-based opportunity to optimize column scans is provided by vec-
torization using SIMD extensions (Single Instruction Multiple Data) of common
CPUs. We developed SIMD-implementations for Bitweaving/H, Bitweaving/V,
and Näıve/M. Näıve/S is intentionally left out because this equals a SIMD-
Scan [23] when it is extended to SIMD. A comparison between a SIMD-Scan and
the original BitWeaving variants has already been done by Li and Patel [13]. In
the remainder of this chapter, we shortly introduce the system we used and its
SIMD extensions. Then we explain our implementations in detail. Finally, all
approaches are compared in an evaluation.

3.1 Target System

A SIMD implementation requires a system with the corresponding registers and
instructions. Generally, SIMD instructions apply one operation to multiple ele-
ments of so-called vector registers at once. For a long time, the vector registers
were 128-bit in size. However, hardware vendors have introduced new SIMD
instruction set extensions operating on wider vector registers in recent years.
For instance, Intel’s Advanced Vector Extensions 2 (AVX2) operates on 256-bit
vector registers and Intel’s AVX-512 uses even 512-bit for vector registers. The
wider the vector registers, the more data elements can be stored and processed in
a single vector. Additionally to an increased register size, each new vector exten-
sion comes with new instructions, e.g. gather-instructions were first introduced
in AVX2. AVX-512 consists of several instruction sets, each providing different
functionality, e.g. conflict detection or prefetching.

For the evaluation of our SIMD-implementation, we used an Intel Xeon Gold
6130 with DDR4-2666 memory offering SIMD extensions with vector registers
of sizes 128-, 256-, and 512-bit (SSE, AVX2, and AVX-512). This system offers
the AVX-512 Vector Length Extensions (VL), which provide most AVX-512
intrinsics for 128-bit and 256-bit registers, that would otherwise only work with
512-bit registers. There is a 32 KB L1 cache for instructions and 32 KB L1 for
data. The L2 cache is 1 MB and the LLC (Last Level Cache) is 22 MB. The
CPU runs at a base frequency of 2.1 GHz. It has 4 sockets, each containing 16
cores with up to two hyperthreads per core. However, the idea is to observe the
influence of the different vector layouts and sizes, not the influence of multiple
memory channels or CPU cores. Thus, all benchmarks are single threaded.

3.2 Implementation Details

The SIMD-implementation shows different challenges depending on the evalu-
ation algorithm to be applied. For instance, Näıve/M could be implemented
easily in regular registers. However, this would not be efficient because single
bits cannot be addressed. This introduces an overhead to test whether a set of
arbitrary bits, which may or may not be aligned within byte boundaries, is set

Final edited form was published in "Data Management Technologies and Applications: 7th International Conference.
Porto 2018", S. 116-140. ISBN: 978-3-030-26636-3

https://doi.org/10.1007/978-3-030-26636-3_6

8

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Fig. 6. Different variants to arrange col-
umn codes in a vector register.

Fig. 7. Percentage of unused bits
per vector register depending on
the vector layout [14].

or not. A SIMD implementation has to solve this with a limited number of avail-
able instructions. Furthermore, while BitWeaving/V is trivially extended from
the original approach to vector sizes, BitWeaving/H either has to make compro-
mises in the usage of the registers, or work around the fact that the instruction
set does not offer a full adder for numbers larger than 64-bit.

Näıve/M

Vector Storage Layout: The Näıve storage layout can easily be adapted to vec-
tor registers. Figure 6 shows different layouts in an exemplary way for 128-bit
registers and 10-bit codes. The layouts for BitWeaving/H will be discussed in
Sect. 3.2. The Näıve layout stores all codes consecutively in a register. Since
codes are not spread across two registers, some bits of a register can remain
unused. However, the Näıve layout is more compact than the BitWeaving/H
layouts, because there are no delimiter bits.

Predicate Evaluation: The most simple predicate evaluation, which can directly
be performed on data in the Näıve layout, is an equality check. For such an
evaluation, two tasks have to be solved: (1) a bit-wise equality check between
the input data and the predicate, and (2) a check for all code words in the
input, if all bits of the comparison from step 1 are set. While task one can
simply be done by applying an exclusive OR and negating the outcome, task
two requires an additional bit-mask to filter the bits of each code word and
perform the comparison. This is because we cannot explicitly access arbitrary
bits of a vector register. The exact procedure for 128 bit is as follows:

1. Load the predicate in Näıve layout with _mm_loadu_si128
2. Load data in näıve layout (input) with _mm_loadu_si128
3. Perform bitwise XOR on the registers loaded in step 1 and step 2 with

_mm_xor_si128
4. Negate the result from step 3. Perform a bit-wise AND with a vector, where

the bits at the position of the current code are set to 1 and all other bits set
to 0 (filter). _mm_andnot_si128 performs both operations.

5. Compare the result from step 4 with filter using _mm_cmpeq_epi32_mask.
The result is an 8-bit mask with the first four bits set to one if both vectors
are equal.

Final edited form was published in "Data Management Technologies and Applications: 7th International Conference.
Porto 2018", S. 116-140. ISBN: 978-3-030-26636-3

https://doi.org/10.1007/978-3-030-26636-3_6

9

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Fig. 8. Evaluation of data stored in the Näıve layout. The data is not extracted like in
a SIMD-Scan but evaluated directly. The filter array is a precomputed array of vectors,
where each vector acts as a filter to zero out every element except for one code word.
On the left side, a graph shows the steps necessary for evaluating one input register.
The right side shows this in an exemplary way for the first two code words of an
input register. In this example, the bit-width of the codes is 4 and the vector width is
128 bit.

6. Compare the result from step 5 with an 8-bit number where the first four bits
are set to one.

7. If all codes in input have been processed, repeat from step 2, else repeat from
step 4 with the next code in input.

This procedure can be ported to 256 and 512 bit by simply renaming the intrin-
sics accordingly. For a better understanding, Fig. 8 illustrates the whole process
for a single input register and provides an example for evaluating the first two
codes in this register using SSE.

BitWeaving/H

Vector Storage Layouts: A straightforward way to implement BitWeaving/H
using vector extensions is to load several 64-bit values containing the column
codes and delimiter bits into a vector register. In this case, the original processor
word approach is retained as proposed in BitWeaving. This vector layout is
shown as Layout 1 in Fig. 6. However, this method does not use the register size
optimally. For instance, in a 128-bit register, there is space for 11 column codes
with a bit width of 10 and their delimiter bits (see Fig. 6 Layout 2), but Layout
1 can only hold 10 codes. In Layout 2, we treat the vector register as a full
processor word and arrange the column codes according to the vector register
size. Figure 7 shows the percentage of unused register space for different register

Final edited form was published in "Data Management Technologies and Applications: 7th International Conference.
Porto 2018", S. 116-140. ISBN: 978-3-030-26636-3

https://doi.org/10.1007/978-3-030-26636-3_6

10

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

sizes and both layouts, where the dashed line shows the usage for Layout 1 and
the remaining lines for Layout 2. As we can see, Layout 2 makes better use of
the vector register. For our evaluation in Sect. 3.3, we implemented both layouts.

Predicate Evaluation: Like in the original approach, the query evaluation on data
in the BitWeaving/H layout in vector registers consists of a number of bit-wise
operations and one addition. The exact bit-wise operations and their sequence
depends on the comparison operator. For instance, a smaller than comparison or
an equality check requires XOR operations and an addition as shown in Sect. 2.2.
For counting the number of results quickly, an AND is also necessary. For 512-bit
registers, this is realized by using AVX-512 intrinsics. The following steps are
necessary for a smaller than comparison if the data is using the vector Layout 1
(see Fig. 6):

1. The predicate and the data in BitWeaving/H layout is loaded with
_mm512_loadu_si512. The constraint must only be loaded once.

2. The bit-wise XOR is performed with _mm512_xor_si512.
3. The addition is performed with _mm512_add_epi64.
4. Optional: To set only the delimiter bits, an AND between the precom-

puted inverted bit-mask and the result from step 3 is performed with
_mm512_and_si512.

5. Optional: For counting the number of set delimiter bits _mm512_popcnt
_epi64 is applied.

6. Optional: The result from step 5 can be further reduced by adding the indi-
vidual counts with _mm512_reduce_add_epi64.

7. Finally, the result is stored with _mm512_storeu_si512. If only the number
of results is required, this step can be skipped. Afterwards, a new iteration
starts at step 1.

Note that the SIMD intrinsics for step 5 and 6 do not exist for 128-bit and
256-bit registers. In these cases, the result is written back to memory and treated
conventionally, i.e. like an array of 64-bit values.

These steps work for Layout 1 but not for Layout 2. This is because in step
3, a full adder is required. However, this functionality is supported for words
containing 16, 32, or 64 bits, but not for 128, 256, or 512 bits. Hence, this adder
must be implemented by the software.

Full Adder for Large Numbers: While Layout 2 uses the size of the vector register
more efficiently, it comes with a major drawback: There is no full adder for more
than 64 bit on recent CPUs. The evaluation with BitWeaving/H uses mainly
bit-wise operations but one addition is necessary in all evaluations, i.e. equality,
greater than, and smaller than. To realize this addition for 128-, 256-, or 512-bit,
there are two different ways: (a) the addition is done by iterating through the
bits of the summands and determining and adding the carry bit in every step,
and (b) only the carry at the 64-bit boundaries is determined and added to the
subsequent 64-bit value. Option (a) requires sequential processing and cannot

Final edited form was published in "Data Management Technologies and Applications: 7th International Conference.
Porto 2018", S. 116-140. ISBN: 978-3-030-26636-3

https://doi.org/10.1007/978-3-030-26636-3_6

11

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Fig. 9. A software adder for large numbers using AVX-512 intrinsics. For BitWeaving,
the two summands are the predicate and the column codes. This approach can easily
be adapted for 128 and 256 bits [14].

be implemented in a vectorized way. Thus, we chose option (b). The exact steps
for option 2 are shown in Fig. 9 for 512-bit vector registers:

1. Since the result of the addition of two 64-bit values is also 64-bit, a potential
overflow cannot be determined directly. Instead, we subtract one summand
from the largest representable number and check whether the result is larger
than the other summand. If it is smaller, there is a carry. This can be done
vectorized. The output of the comparison between two vector registers con-
taining unsigned 64-bit integers is a bit-mask.

2. The bit-mask resulting from step 1 is used on a vector containing only the
decimal number 1 as 64-bit value at every position.

3. A carry is always added to the subsequent 64-bit value. For this reason, the
result from step 2 is shifted to the left by 64-bit. This is realized by intrinsics
providing a permutation of 64-bit values.

4. Finally, the two summands and the result from step 3 are added.

All steps can be done using AVX-512 intrinsics. If one of the summands is
a constant, like the predicate in BitWeaving, the subtraction in step 1 can be
precomputed.

BitWeaving/V. The implementation of vectorized BitWeaving/V is straight-
forward because all needed functionality is provided by the SIMD intrinsics of
SSE, AVX2, and AVX-512. The layout stays exactly the same as described in
Sect. 2.2. In our case, the processor words Vi are 128-bit, 256-bit, or 512-bit
long. The number of necessary words for a segment equals the number of bits

Final edited form was published in "Data Management Technologies and Applications: 7th International Conference.
Porto 2018", S. 116-140. ISBN: 978-3-030-26636-3

https://doi.org/10.1007/978-3-030-26636-3_6

12

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Fig. 10. Throughput and performance of all presented 128-bit implementations for
growing code sizes.

per code word. The evaluation is also done as described in Sect. 3.2. For instance,
an equality check using AVX-512 requires the following steps for each segment:

1. Load the first word of the segment and a vector filled with the 1st bit of the
predicate with _mm512_loadu_si512.

2. Perform a bit-wise XOR on the registers loaded in step 1 with
_mm512_xor_si512

3. Invert result from step 1. Perform a bit-wise AND with a 1-vector if it is
the first word of the segment, perform bit-wise AND with the result from
the last iteration otherwise. The inverting and bit-wise AND are done with
_mm512_andnot_si512.

4. Repeat from step one with next word of the segment and the next bit of the
predicate.

3.3 Evaluation and Summary

In the evaluation, we want to observe the influence of the different vector layouts
and sizes, not the influence of multiple memory channels or CPU cores. Thus,
all benchmarks are single threaded. All measurement values are averaged over
ten runs.

Overview. Figure 10 shows a comparison of the performance (codes/s) and the
throughput (GB/s) of all implementations using 128 bit. As expected, the Näıve
layout provides the lowest throughput and performance. The time needed for
evaluating every code in a register individually cannot make up for the slightly
better usage of the available bits. The two layouts of BitWeaving/H do not show
any significant differences but perform better than the Näıve/M approach.

Finally, BitWeaving/V shows the highest throughput and performance as
could be expected since it is the approach with the least operations, which have
to be performed while the input vector layout is more compact than in BitWeav-
ing/H. Moreover, it has the smallest output size, resulting in less store opera-
tions, i.e. the bits containing the evaluation result are stored consecutively in the
result register. BitWeaving/V is the only implementation, where the throughput
increases when the code size increases, while Näıve/M and BitWeaving/H show

Final edited form was published in "Data Management Technologies and Applications: 7th International Conference.
Porto 2018", S. 116-140. ISBN: 978-3-030-26636-3

https://doi.org/10.1007/978-3-030-26636-3_6

13

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Fig. 11. Comparison of the implemented column scan techniques.

a constant throughput. A reason for this behaviour is that in BitWeaving/V, the
number of result bits per input bit decreases when the code size increases because
more data is needed to compute a result. This leads to less store operations for
the same amount of input data. For instance, if the bit width of the codes is
3, one segment consists of 3 processor words. Thus, the result, i.e. one proces-
sor word, is written back after these 3 processor words have been evaluated.
But if the bit width is 15, there are 15 processor words, which are evaluated
before one processor word is written back to memory. At the same time, the
performance decreases for all BitWeaving approaches while the size of the codes
increases. In BitWeaving/H, this is because less codes fit into one processor word
when the code size increases. In BitWeaving/V, it takes more operations before
a result is computed as explained before. Before going into detail, Fig. 11 shows
an overview of all implementations. While BitWeaving/V stays clearly on top of
the other approaches, it also shows some variation between the different vector
sizes. BitWeaving/H is less influenced by the vector size.

BitWeaving/H. For codes containing 3 bits and a delimiter bit, the non-
optimized 64 bit implementation achieves a throughput of 2.9 GB/s, which equals
a performance of almost 58e+8 codes per second.

The results for 3-bit column codes for all different horizontal vector layouts
are shown in Table 1. All values are averaged over 10 runs. The results show,
that there is a performance gain when using the vectorized approach, but it
is not as significant as expected. For instance, we would expect a 100% speed-
up when changing from 64 to 128 bits since we can process twice the data at
once. Unfortunately, the throughput and the performance increase only by 14%.
Moreover, it even decreases when changing from 256 to 512 bits for both vector
layouts. However, these numbers can only provide a rough estimation since the
throughput varies by up to 0.5 GB/s between the individual runs.

Figure 12 shows the throughput and performance for all implemented
BitWeaving/H versions and different code bitwidths. For comparison, we also
implemented a scalar 64-bit BitWeaving/H version without any further opti-
mization for special cases, such that the predicate evaluation is always executed
in the same way.

The differences between the vectorized implementations and the scalar imple-
mentation becomes even smaller when the code size increases while the through-
put oscillates between 2.5 GB/s and 4 GB/s for all versions (see Fig. 12). There is
a mere tendency of the 256-bit implementations to provide the best performance

Final edited form was published in "Data Management Technologies and Applications: 7th International Conference.
Porto 2018", S. 116-140. ISBN: 978-3-030-26636-3

https://doi.org/10.1007/978-3-030-26636-3_6

14

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Table 1. Evaluation results on Intel Xeon Gold 6130, 3 bits per code, average over 10
runs [14].

Vector layout Throughput
(GB/s)

Performance
(Codes/s)

None (64-bit) (baseline) 2.9 57.8e+8

2X64-bit (Layout 1) 3.3 65.7e+8

4X64-bit (Layout 1) 3.5 69.3e+8

8X64-bit (Layout 1) 2.9 57.6e+8

128-bit (Layout 2) 3.6 71.6e+8

256-bit (Layout 2) 3.6 72.4e+8

512-bit (Layout 2) 2.9 58.9e+8

in average and for the 512-bit versions to provide the least performance. Never-
theless, the insignificance of the differences cannot be explained with the query
evaluation itself. To find the bottleneck, we deleted the evaluation completely,
such that only the vectorized load and store instructions were left. Then, we mea-
sured the throughput again and received results between 3 GB/s and 4 GB/s. A
simple memcopy had a stable performance around 4.5 GB/s. Hence, in contrast to
the naive implementation, the vectorized implementations are bound by the per-
formance of loading and storing data, while the peak throughput cannot become
larger than 4.5 GB/s.

Fig. 12. Throughput and performance for BitWeaving/H [14].

BitWeaving/V. The performance and throughput of all implemented
BitWeaving/V versions for different code sizes are shown in Fig. 13. Contrary to
BitWeaving/H, there is a clear increase of performance and throughput when the
register size increases. A reason for this is the already mentioned smaller output
size. Unlike in BitWeaving/V, in the horizontal approach, there is a padding
between the result bits, which is as wide as a code word. To get these result bits,

Final edited form was published in "Data Management Technologies and Applications: 7th International Conference.
Porto 2018", S. 116-140. ISBN: 978-3-030-26636-3

https://doi.org/10.1007/978-3-030-26636-3_6

15

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Fig. 13. Throughput and performance for BitWeaving/V.

the whole vector word has to be extracted to several regular registers, where
the bits can be shifted together, or even written back to memory completely if
there are not enough registers. Since it is common for CPU cores to have only 16
general purpose registers, this worst-case is the usual case. However, BitWeav-
ing/V does not have such a padding, which makes the output more compact
and reduces store operations. This relaxes the memory bandwidth bottleneck
to a certain degree. This is especially obvious in the throughput for larger code
sizes, where there are more input registers processed before the output register
is written back. The performance decrease for 512 bit at a code size of 4 bit
is reproducible. It comes with a throughput, which is not increased as much
as expected. We did not find an explanation for this in the algorithm itself,
especially because it only occurs for 512 bit. A possible reason is a fail of the
optimizer during compilation. To test this theory, we compiled the exactly same
source code with icc, whereas we were using gcc before. The results did not show
the decrease at 4 bit. Instead, there is a peak at 10 bit and the overall increase
is less steady. Thus, it is safe to assume that these outliers are caused by the
compiler rather than the implementation or the hardware.

4 FPGA-Implementation

Besides the implementation by means of wider vector registers, the second hard-
ware based implementation possibility is the use of Field Programmable Gate
Arrays (FPGAs). FPGAs are integrated circuits, which are re-configurable after
being manufactured. More specifically, a hardware description language, e.g.,
Verilog, is used to describe the hardware modules. This description is then
translated via several steps to an implementation for the FPGAs. From the per-
spective of intra-value or intra-instruction parallelism based storage layout, the
advantage of FPGAs is that we are able to use an arbitrary length of processor
word in the custom hardware design.

4.1 Target System

Modern FPGAs are integrated with MPSoC (multiprocessor system on chip)
architectures. The Xilinx� Zynq UltraScale+™ platform—our target FPGA

Final edited form was published in "Data Management Technologies and Applications: 7th International Conference.
Porto 2018", S. 116-140. ISBN: 978-3-030-26636-3

https://doi.org/10.1007/978-3-030-26636-3_6

16

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Fig. 14. Pipeline-based PE for different intra-instruction parallelism based column
scan techniques.

system—is such a system containing not only Programmable Logic (PL) based
FPGA, but also has MPSoC-based Processing System (PS) in particular having
four ARM� Cortex-A53 cores with 32 KB of L1 instruction cache resp. 32 KB
data cache per core and a 1MB shared L2 cache. The main memory consists of
two memory modules (DDR4-2133) with the accumulated capacity of 4.5 GB.
Although the main memory of our targeted FPGA platform has limitations
regarding capacity and bandwidth compared to modern Intel systems, the flex-
ibility to prepare any type of custom hardware and the high parallelism criteria
of FPGAs are very beneficial to overcome these challenges.

4.2 Implementation Detail

Inside the PL area of FPGAs, we can develop Processing Element (PE) modules
for any type of predicates using Configurable Logic Block (CLB) slices, where
each CLB slice consists of Look-up Tables (LUTs), Flip-Flops (FFs), and cas-
cading adders [22]. As illustrated in Fig. 14, the stages of PEs are processing
words in pipeline manner through overlapping instructions, whereby we devel-
oped 3-stage, 5-stage and 4-stage pipeline-based PE for equality check predicate
evaluation on the basis of Näıve/M, BitWeaving/H and BitWeaving/V tech-
niques as introduced in Figs. 3, 4 and 5, respectively. All PEs have a common
Stage 1 of reading data words from main memory (see Fig. 14). Rest in every
stages a specific task is performed as shown in Fig. 14, whereby the stages for
different techniques are grouped by colors. The detail of Näıve/M pipeline stages
are:

Stage 2: Check equality condition bit-wise and set S flag values according to the
condition satisfying result,

Stage 3: Perform addition between S flags in order to count the matched column
codes.

Then, the detail of BitWeaving/H pipeline stages are:

Final edited form was published in "Data Management Technologies and Applications: 7th International Conference.
Porto 2018", S. 116-140. ISBN: 978-3-030-26636-3

https://doi.org/10.1007/978-3-030-26636-3_6

17

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Fig. 15. Basic architecture [14].

Stage 2: Executing bit-wise Exclusive-OR operations,
Stage 3: Masking operations (Addition),
Stage 4: Masking operations (Exclusive-OR) using predefined mask registers to

prepare the output word,
Stage 5: Adding delimiter bits of output words in order to count the matched

column codes.

Finally, the detail of BitWeaving/V based pipelines are:

Stage 2: Executing bit-wise Exclusive-OR operations,
Stage 3: Executing bit-wise OR operations,
Stage 4: Adding all bits of previous stage resultant words in order to count the

matched codes (this stage would execute after every w cycles, whereas w is
the width of column code).

For all cases, we write only the final output word of count to the main
memory. This is not shown in Fig. 14 as it is a non-pipeline stage which executes
once only. Therefore, the total number of cycles for Näıve/M, BitWeaving/H
and BitWeaving/V is (n + 3), (n + 5) and (n + 4), respectively, where n is the
total number of input words.

Basic Architecture. We started with developing 64-bit word based hardware
design as Basic architecture (BASIC 64) and subsequently increased the word
width to 128-bit (BASIC 128) (see Fig. 15). In this architecture, we use Direct
Memory Access (DMA) between the main memory and the PE, in order to
reduce the load of the ARM core and to reduce the latency of accessing the main
memory. We prepared basic architecture based designs having either Näıve/M
or BitWeaving/H or BitWeaving/V technique based PE, whereas each design is
processing either 64-bit or 128-bit words.

Hybrid Architecture. The main challenge comes up when the word to be
processed become larger than 128-bit, because the width of the data channel

Final edited form was published in "Data Management Technologies and Applications: 7th International Conference.
Porto 2018", S. 116-140. ISBN: 978-3-030-26636-3

https://doi.org/10.1007/978-3-030-26636-3_6

18

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

V1 0 0 1 1 0 1 1 1

V3 1 1 0 0 1 0 0 0

V2 0 1 1 0 0 0 1 1

(a)

V4 0 0 1 1 0 1 1 1

V6 1 1 0 0 1 0 0 0

V5 0 1 1 0 0 0 1 1

V1 0 0 1 1 0 1 1 1

V3 1 1 0 0 1 0 0 0

V2 0 1 1 0 0 0 1 1

V4 0 0 1 1 0 1 1 1

V6 1 1 0 0 1 0 0 0

V5 0 1 1 0 0 0 1 1

(b)

Fig. 16. BitWeaving/V storage layout patterns, (a) for basic and (b) for hybrid archi-
tectures.

Fig. 17. Hybrid architecture [14].

of the main memory can only be extended up to 128-bit although the PEs
are capable to handle word sizes beyond 128-bit. To tackle this challenge, we
developed a hybrid architecture based on multiple DMAs, where each DMA is
accessing the main memory via an independent data channel. As a consequence,
we replicate our PE and DMA a few times depending on the number of available
main memory data channels.

Moreover, two main memory modules are available on our targeted FPGA
platform as mentioned earlier: one is connected with the PS and the other one is
connected to the PL. The PS part main memory has four data channels, while
the PL part has only one. However, maximum channel width is 128-bit. So, max-
imum five times of 128-bit words can be processed in parallel by using multiple
main memory modules. However, having maximum number of data channels in
a design saturates the bandwidth of main memory. Therefore, we can prepare
another custom hardware module, whereas 128-bit words can be combined into
larger words. Thus, we implemented and replicated a custom combiner (namely
Combiner 256) to combine two 128-bit words to produce 256-bit word. This
introduces another stage in each proposed pipeline design, such that each PE
is processing a 256-bit word in each clock cycle. Such a combiner can easily
adoptable in Näıve/M and BitWeaving/H techniques based hardware designs
as they stored codes in words horizontally rather than vertically like BitWeav-

Final edited form was published in "Data Management Technologies and Applications: 7th International Conference.
Porto 2018", S. 116-140. ISBN: 978-3-030-26636-3

https://doi.org/10.1007/978-3-030-26636-3_6

19

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

B 64 B 128 H 512 H 1024

109.5

1010

T
hr
ou

gh
pu

t(
G
B
/s
)

(a)

Näıve/M

BitWeaving/H

BitWeaving/V

B 64 B 128 H 512 H 1024
109.5

1010

1010.5

P
er
fo
rm

an
ce
(C

od
es
/s
)

(b)

Näıve/M

BitWeaving/H

BitWeaving/V

Fig. 18. Analysis on (a) Throughput-wise, (b) Performance-wise for basic and hybrid
architectures using different column scan techniques (3-Bit Per Code).

ing/V. Therefore, for BitWeaving/V, the input words are stored alternatively
rather than sequentially as illustrated in Fig. 16(b) for 3-bit column codes, so
that combiner can merge two words perfectly without breaking the sequence of
codes. However, we keep the as usual storage pattern of BitWeaving/V for basic
architecture as described in Sect. 2.2 (see Fig. 16(a)).

In addition, we use appropriate depth based FIFO between the combiners
and the PEs to synchronize IO transmission between PEs and main memory,
whereas main memory is using stream-based data transmission. This avoids an
overflow of the DMA buffer. By mixing all the above mentioned concepts, we
prepared hybrid architecture based designs as HYBRID 512 and HYBRID 1024,
to process two and four times of 256-bit word in parallel in order to make 512-bit
and 1024-bit words, respectively for all techniques (see Fig. 17).

4.3 Evaluation and Summary

Experiments are evaluated using two main metrics: throughput (GB/s) and per-
formance (Codes/s). Although in our previous work, we evaluated energy con-
sumption metric as estimated energy and actual energy for codes per joule on
BitWeaving/H scan [14]. But in these evaluations, we did not consider energy
consumption due to having same behaviour like performance as it depends on
codes. In addition, we showed that, our proposed basic and hybrid architec-
tures win over ARM-based evaluations for BitWeaving/H scan [14]. Therefore,
these evaluations are targeted to analysis the behaviour between Näıve/M,
BitWeaving/H, BitWeaving/V column scan techniques for basic and hybrid
architectures. We evaluated with BASIC 64, BASIC 128, HYBRID 512 and
HYBRID 1024 designs for Näıve/M, BitWeaving/H and BitWeaving/V scan
techniques, whereby Fig. 18 shows the results for 3-bit column codes (excluding
delimiter bit for BitWeaving/H scan) with equality check predicate.

We started with BASIC 64 design based evaluations and found that, Näıve/M
provides higher throughput than BitWeaving techniques (see Fig. 18(a)).

Final edited form was published in "Data Management Technologies and Applications: 7th International Conference.
Porto 2018", S. 116-140. ISBN: 978-3-030-26636-3

https://doi.org/10.1007/978-3-030-26636-3_6

20

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

B 64 B 128 H 512 H 1024

2

4

Näıve/M

Speedup

B 64 B 128 H 512 H 1024

2

4

6

BitWeaving/H

Speedup

B 64 B 128 H 512 H 1024

2

4

6

BitWeaving/V

Speedup

Fig. 19. Analysis in terms of Speedup between basic and hybrid architectures for all
column scan techniques.

3 7 15

1010

1010 5

Bits/Code

Näıve/M

Throughput(GB/s)

Performance(Codes/s)

3 7 15

1010

Bits/Code

BitWeaving/H

Throughput(GB/s)

Performance(Codes/s)

3 7 15

1010

1010 5

Bits/Code

BitWeaving/V

Throughput(GB/s)

Performance(Codes/s)

Fig. 20. Analysis on HYBRID 1024 design using different column scan techniques for
different number of bits per code.

Because it able to execute on 300 MHz frequency due to having simple logic
instruction based technique, whereas others execute on 250 MHz. However,
this scenario changed for BASIC 128, HYBRID 512 and HYBRID 1024 based
designs, where we achieved approximately same throughput for all techniques
(see Fig. 18(a)) as the frequency of these designs are identical. Moreover, dif-
ferent number of total clock cycles of PEs for different techniques as shown in
Sect. 4.2 do not effect the throughput due to its pipeline mechanism. In the
hybrid architectures-based designs data words are uniformly distributed among
the PEs. In addition, the hybrid architecture based designs are processing beyond
256-bit width based data words through multiple main memory data channels
and also flexible to use additional hardware (i.e., Combiner 256, FIFO), which
is not available on BASIC 64 and BASIC 128 designs. As a consequence, for
all techniques, HYBRID 1024 gives the peak throughput of approx. 12 GB/s,
whereas three data channels from PS part main memory and one data channel
from PL part main memory are used. Although the PS part main memory have
maximum four data channels. But using the maximum number of channels in
parallel saturates the bandwidth of PS part main memory. So, in HYBRID 1024
we used multiple main memories in order to have four individual data channels.

Performance-wise evaluation varies between different techniques. BitWeav-
ing/H provides always less performance in terms of codes per second among all
techniques (see Fig. 18(b)). In BASIC 64 design, Näıve/M provides the high-
est performance (see Fig. 18(b)). However, rest in all designs the performance
become marginal between Näıve/M and BitWeaving/V (see Fig. 18(b)). There
are two reasons. On the one side, the number of bit padding increases in Näıve/M

Final edited form was published in "Data Management Technologies and Applications: 7th International Conference.
Porto 2018", S. 116-140. ISBN: 978-3-030-26636-3

https://doi.org/10.1007/978-3-030-26636-3_6

21

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Table 2. Resource utilization
for HYBRID 1024 designs.

Scan tech LUTs (%) FFs (%)

Näıve/M 12.89 8.64

BitWeaving/H 13.68 9.5

BitWeaving/V 13.99 9.15

Na ve/M BitWeaving/H BitWeaving/V

Throughput-wise

Performance-wise

Resource Utilization-wise

Fig. 21. Evaluation matrix-wise analysis
on the column scan techniques.

technique based BASIC 128, HYBRID 512 and HYBRID 1024 designs exponen-
tially than BASIC 64 as the word size increases. As mentioned earlier, hybrid
architecture merged two 128-bit words to make one 256-bit word. So, there are
2-bit bit padding in one 128-bit word for 3-bit column code. It extend to 4-bit bit
padding for 256-bit word and so on. As a consequence, we are losing number of
codes per word as the word size increases which effects the performance. On the
other side, there is no chance of losing codes in BitWeaving/V as each bit of a
code is store vertically per word (see Fig. 1(d)). This makes the marginal balance
of processing codes per second between Näıve/M and BitWeaving/V. Therefore,
performance-wise Näıve/M and BitWeaving/V both win over BitWeaving/H.

Technique-wise the behavior of throughput and performance are identical
among the basic and hybrid architectures (see Fig. 18). Therefore, the speedup
for main memory based intra-value parallelism based scan techniques among
the basic and hybrid architectures on the targeted FPGA platform is linear
(see Fig. 19), whereas the BASIC 64 design is the baseline. This defines, that
the HYBRID 1024 design is best for all mentioned column scan techniques on
FPGAs.

We also evaluated different numbers of bits per (column) code for three men-
tioned techniques using the best design: HYBRID 1024 (see Fig. 20). In this case
symmetrical behavior found between all techniques, whereby a linearly decreas-
ing behavior found for performance as the bits per code increases except the
throughput. The reason is— increasing the code size decreases the number of
codes per word which negatively effects the performance which is evaluated on
the basis of the number of codes as expected, whereas throughput evaluation is
independent of codes.

Table 2 illustrated the overall resource utilization in terms of LUTs (%) and
FFs (%) for the best design HYBRID 1024 among all techniques using Xilinx�
resource analyzer, whereby Näıve/M technique requires most optimum resource
than the others due to its straight-forward predicate evaluation mechanism. After
all kind of evaluations we found that, throughput-wise all techniques showed
identical behaviour, performance-wise Näıve/M and BitWeaving/V techniques
are better than BitWeaving/H, but resource utilization-wise Näıve/M technique
is the most optimum one. Finally, these leads us to conclude that, Näıve/M
technique is the best technique for FPGAs (see Fig. 21).

Final edited form was published in "Data Management Technologies and Applications: 7th International Conference.
Porto 2018", S. 116-140. ISBN: 978-3-030-26636-3

https://doi.org/10.1007/978-3-030-26636-3_6

22

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

5 Related Work

Generally, the efficient utilization of SIMD instructions in database systems is
a very active research field [17,25]. On the one hand, these instructions are
frequently applied in lightweight data compression algorithms [5,12,24]. On the
other hand, SIMD instructions are also used in other database operations like
scans [7,23], aggregations [25] or joins [2].

Most research in the direction of FPGA optimization focused on creating
custom hardware modules for different types of database query operations [10,
15,18,22,26]. For example, Ziener et al. presented concepts and implementations
for hardware acceleration for almost all important operators appearing in SQL
queries [26]. Moreover, Sidler et al. explored the benefits of specializing operators
for the Intel Xeon+FPGA machine, where the FPGA has coherent access to
the main memory through the QPI bus [18]. Teubner et al. performed XML
projection on FPGAs and report on performance improvements of several factors
[21].

Ever-increasing amount of data leads the recent research on main mem-
ory column store database system, whereas column stores are more effective
performance-wise than row stores. In addition, it allows to evaluate query
directly on the intra-data parallelism based compact storage layout. For that,
there are several research has happened on how to efficiently evaluate query
directly on the compact storage layout in order to improve the column scan
performance, whereas the scan is one of the most important primitives in main
memory database systems [7,13]. But to the best of our knowledge, none of the
existing works investigated, firstly the domain of FPGA-accelerated data scan,
secondly the comparison behavior as per intra-data parallelism based column
scan mechanisms between FPGA-based and SIMD-based hardware implementa-
tion.

6 Conclusions

A key primitive in main memory column store database systems is column
scan [7,13,23], because analytical queries usually compute aggregations over full
or large parts of columns. Thus, the optimization of the scan primitive is very
crucial [7,13,23]. In this paper, we explored two hardware-based implementation
opportunities for scan optimization using SIMD extensions and custom archi-
tectures on FPGA on different scan mechanisms. In particular, we analysis the
behavioral differences between Näıve [11] and BitWeaving [13] scan mechanisms
as per hardware-based implementation. With both implementation, we are able
to improve the scan performance, whereas the FPGA is best for Näıve technique
and BitWeaving is perfect for SIMD. Therefore, to improve scan performance
through FPGA do not require any fancy scan mechanism as BitWeaving due to
its high parallelism criteria and flexibility to configure hardware as per require-
ments.

Final edited form was published in "Data Management Technologies and Applications: 7th International Conference.
Porto 2018", S. 116-140. ISBN: 978-3-030-26636-3

https://doi.org/10.1007/978-3-030-26636-3_6

23

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

References

1. Abadi, D.J., Madden, S., Ferreira, M.: Integrating compression and execution in
column-oriented database systems. In: Proceedings of the SIGMOD, pp. 671–682
(2006)

2. Balkesen, C., Alonso, G., Teubner, J., Özsu, M.T.: Multi-core, main-memory joins:
sort vs. hash revisited. PVLDB 7(1), 85–96 (2013)

3. Binnig, C., Hildenbrand, S., Färber, F.: Dictionary-based order-preserving string
compression for main memory column stores. In: Proceedings of the SIGMOD, pp.
283–296 (2009)

4. Boncz, P.A., Kersten, M.L., Manegold, S.: Breaking the memory wall in monetdb.
Commun. ACM 51(12), 77–85 (2008)

5. Damme, P., Habich, D., Hildebrandt, J., Lehner, W.: Lightweight data compression
algorithms: an experimental survey (experiments and analyses). In: Proceedings of
the EDBT, pp. 72–83 (2017)

6. Faerber, F., Kemper, A., Larson, P., Levandoski, J.J., Neumann, T., Pavlo, A.:
Main memory database systems. Found. Trends Databases 8(1–2), 1–130 (2017)

7. Feng, Z., Lo, E., Kao, B., Xu, W.: ByteSlice: pushing the envelop of main memory
data processing with a new storage layout. In: Proceedings of the SIGMOD, pp.
31–46 (2015)

8. He, J., Zhang, S., He, B.: In-cache query co-processing on coupled CPU-GPU
architectures. PVLDB 8(4), 329–340 (2014)

9. Hildebrandt, J., Habich, D., Damme, P., Lehner, W.: Compression-aware in-
memory query processing: vision, system design and beyond. In: ADMS Workshop
at VLDB, pp. 40–56 (2016)

10. István, Z., Sidler, D., Alonso, G.: Caribou: Intelligent distributed storage. PVLDB
10(11), 1202–1213 (2017)

11. Lamport, L.: Multiple byte processing with full-word instructions. Commun. ACM
18(8), 471–475 (1975)

12. Lemire, D., Boytsov, L.: Decoding billions of integers per second through vector-
ization. Softw. Pract. Exp. 45(1), 1–29 (2015)

13. Li, Y., Patel, J.M.: BitWeaving: fast scans for main memory data processing. In:
Proceedings of the SIGMOD, pp. 289–300 (2013)

14. Lisa, N.J., Ungethüm, A., Habich, D., Nguyen, T.D.A., Kumar, A., Lehner, W.:
Column scan optimization by increasing intra-instruction parallelism. In: Proceed-
ings of the DATA, pp. 344–353. SciTePress, Setúbal (2018)

15. Mueller, R., Teubner, J., Alonso, G.: Data processing on FPGAs. Proc. VLDB
Endow. 2(1), 910–921 (2009). 10.14778/1687627.1687730

16. Oukid, I., Booss, D., Lespinasse, A., Lehner, W., Willhalm, T., Gomes, G.: Memory
management techniques for large-scale persistent-main-memory systems. PVLDB
10(11), 1166–1177 (2017)

17. Polychroniou, O., Raghavan, A., Ross, K.A.: Rethinking SIMD vectorization for
in-memory databases. In: Proceedings of the SIMD, pp. 1493–1508 (2015)

18. Sidler, D., István, Z., Owaida, M., Alonso, G.: Accelerating pattern matching
queries in hybrid CPU-FPGA architectures. In: Proceedings of the SIGMOD, pp.
403–415 (2017)

19. Sidler, D., Istvan, Z., Owaida, M., Kara, K., Alonso, G.: doppioDB: a hard-
ware accelerated database. In: Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD 2017, pp. 1659–1662. ACM,
New York (2017). https://doi.org/10.1145/3035918.3058746. http://doi.acm.org/
10.1145/3035918.3058746

Final edited form was published in "Data Management Technologies and Applications: 7th International Conference.
Porto 2018", S. 116-140. ISBN: 978-3-030-26636-3

https://doi.org/10.1007/978-3-030-26636-3_6

24

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

https://doi.org/10.1145/3035918.3058746
http://doi.acm.org/10.1145/3035918.3058746
http://doi.acm.org/10.1145/3035918.3058746

20. Stonebraker, M., et al.: C-store: a column-oriented DBMS. In: Proceedings of the
VLDB, pp. 553–564 (2005)

21. Teubner, J.: FPGAs for data processing: current state. IT Inf. Technol. 59(3),
125–131 (2017). https://doi.org/10.1515/itit-2016-0046

22. Teubner, J., Woods, L.: Data Processing on FPGAs. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, San Rafael (2013)

23. Willhalm, T., Popovici, N., Boshmaf, Y., Plattner, H., Zeier, A., Schaffner, J.:
SIMD-scan: ultra fast in-memory table scan using on-chip vector processing units.
VLDB 2(1), 385–394 (2009)

24. Zhao, W.X., Zhang, X., Lemire, D., Shan, D., Nie, J., Yan, H., Wen, J.: A general
SIMD-based approach to accelerating compression algorithms. ACM Trans. Inf.
Syst. 33(3), 1–28 (2015)

25. Zhou, J., Ross, K.A.: Implementing database operations using SIMD instructions.
In: Proceedings of the SIGMOD, pp. 145–156 (2002)

26. Ziener, D., Bauer, F., Becher, A., Dennl, C., Meyer-Wegener, K., Schürfeld, U.,
et al.: FPGA-based dynamically reconfigurable SQL query processing. ACM Trans.
Reconfig. Technol. Syst. 9(4), 25:1–25:24 (2016)

27. Zukowski, M., Héman, S., Nes, N., Boncz, P.A.: Super-scalar RAM-CPU cache
compression. In: Proceedings of the ICDE, p. 59 (2006)

Final edited form was published in "Data Management Technologies and Applications: 7th International Conference.
Porto 2018", S. 116-140. ISBN: 978-3-030-26636-3

https://doi.org/10.1007/978-3-030-26636-3_6

25

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

https://doi.org/10.1515/itit-2016-0046

	FPGA vs. SIMD_Vorsatzblatt
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Nusrat Jahan Lisa, Annett Ungethüm, Dirk Habich, Wolfgang Lehner, Nguyen Duy Anh Tuan, Akash Kumar

	Lisa2019_Chapter_FPGAVsSIMDComparisonForMainMem.pdf
	FPGA vs. SIMD: Comparison for Main Memory-Based Fast Column Scan
	1 Introduction
	2 Column Scan
	2.1 Naïve
	2.2 BitWeaving
	2.3 Summary

	3 SIMD-Implementation
	3.1 Target System
	3.2 Implementation Details
	3.3 Evaluation and Summary

	4 FPGA-Implementation
	4.1 Target System
	4.2 Implementation Detail
	4.3 Evaluation and Summary

	5 Related Work
	6 Conclusions
	References

