Skip to main content

Sensor-Fusion-Based Trajectory Reconstruction for Quadrotor Drones

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 997))

  • 537 Accesses

Abstract

In this paper, we propose a novel sensor-fusion-based method to eliminate errors of MEMS IMUs, and reconstruct trajectory of quadrotor drones. MEMS IMUs are widely equipped in quadrotor drones and other mobile devices. Unfortunately, they carry a lot of inherent errors, which cause poor results in trajectory reconstruction. To solve this problem, an error model for accelormeter signals in MEMS IMUs is established. In this model, the error is composed of a bias component and a noise component. First, a low-pass filter with downsampling is applied to reduce the noise component. Then, the bias component is detected and eliminated dynamically with the assistance of other sensors. Finally, the trajectory of the drone is reconstructed through integration of the calibrated accelormeter data. We apply our trajectory reconstruction method on Parrot AR.Drone 2.0 which employs a low-cost MEMS IMU. The experimental results prove its effectiveness. This method can theoretically be applied to any other mobile devices which are equipped with MEMS IMUs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://developer.parrot.com/products.html.

References

  1. Kopf, J., Cohen, M.F., Szeliski, R.: First-person hyper-lapse videos. ACM Trans. Graph. (TOG) 33, 78 (2014)

    Article  Google Scholar 

  2. Ten Hagen, S., Krose, B.: Trajectory reconstruction for self-localization and map building. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2002, vol. 2, pp. 1796–1801 (2002)

    Google Scholar 

  3. Nägeli, T., Meier, L., Domahidi, A., Alonso-Mora, J., Hilliges, O.: Real-time planning for automated multi-view drone cinematography. ACM Trans. Graph. (TOG) 36, 132 (2017)

    Article  Google Scholar 

  4. Suvorova, S., Vaithianathan, T., Caelli, T.: Action trajectory reconstruction from inertial sensor measurements. In: 2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA), pp. 989–994 (2012)

    Google Scholar 

  5. Woodman, O.J.: An introduction to inertial navigation. Technical report, University of Cambridge, Computer Laboratory (2007)

    Google Scholar 

  6. Yang, J., et al.: Analysis and compensation of errors in the input device based on inertial sensors. In: Proceedings of the International Conference on Information Technology: Coding and Computing, ITCC 2004, vol. 2, pp. 790–796 (2004)

    Google Scholar 

  7. Pedley, M.: High precision calibration of a three-axis accelerometer. Freescale Semicond. Appl. Note 1 (2013)

    Google Scholar 

  8. Fredrikstad, T.E.N.: Vision aided inertial navigation. Master’s thesis, NTNU (2016)

    Google Scholar 

  9. Kee, C., Parkinson, B.W., Axelrad, P.: Wide area differential GPS. Navigation 38, 123–145 (1991)

    Article  Google Scholar 

  10. Farrell, J.: Aided navigation: GPS with high rate sensors (2008)

    Google Scholar 

  11. Kleusberg, A., Langley, R.B.: The limitations of GPS. GPS World 1 (1990)

    Google Scholar 

  12. Huang, A.S., et al.: Visual odometry and mapping for autonomous flight using an RGB-D camera. In: Christensen, Henrik I., Khatib, Oussama (eds.) Robotics Research. STAR, vol. 100, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14

    Chapter  Google Scholar 

  13. Pflugfelder, R., Bischof, H.: Localization and trajectory reconstruction in surveillance cameras with nonoverlapping views. IEEE Trans. Pattern Anal. Mach. Intell. 32, 709–721 (2010)

    Article  Google Scholar 

  14. Silvatti, A.P., Cerveri, P., Telles, T., Dias, F.A., Baroni, G., Barros, R.M.: Quantitative underwater 3D motion analysis using submerged video cameras: accuracy analysis and trajectory reconstruction. Comput. Methods Biomech. Biomed. Eng. 16, 1240–1248 (2013)

    Article  Google Scholar 

  15. Biswas, J., Veloso, M.: Wifi localization and navigation for autonomous indoor mobile robots. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 4379–4384 (2010)

    Google Scholar 

  16. Faragher, R., Harle, R.: Location fingerprinting with bluetooth low energy beacons. IEEE J. Sel. Areas Commun. 33, 2418–2428 (2015)

    Article  Google Scholar 

  17. Chen, Y., Kobayashi, H.: Signal strength based indoor geolocation. In: IEEE International Conference on Communications, ICC 2002, vol. 1, pp. 436–439 (2002)

    Google Scholar 

  18. Amzajerdian, F., Pierrottet, D., Petway, L., Hines, G., Roback, V.: Lidar systems for precision navigation and safe landing on planetary bodies. In: Proceedings of the SPIE, vol. 8192, pp. 819202 (2011)

    Google Scholar 

  19. Hazas, M., Hopper, A.: Broadband ultrasonic location systems for improved indoor positioning. IEEE Trans. Mob. Comput. 5, 536–547 (2006)

    Article  Google Scholar 

  20. Rencken, W.D.: Concurrent localisation and map building for mobile robots using ultrasonic sensors. In: Proceedings of the 1993 IEEE/RSJ International Conference on IROS, vol. 3, pp. 2192–2197 (1993)

    Google Scholar 

  21. Titterton, D., Weston, J.L.: Strapdown Inertial Navigation Technology, vol. 17 (2004)

    Google Scholar 

  22. Suh, Y.S.: Attitude estimation using low cost accelerometer and gyroscope. In: Proceedings KORUS 2003 the 7th Korea-Russia International Symposium on Science and Technology, vol. 2, pp. 423–427 (2003)

    Google Scholar 

  23. Toyozumi, N., Takahashi, J., Lopez, G.: Trajectory reconstruction algorithm based on sensor fusion between IMU and strain gauge for stand-alone digital pen. In: 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1906–1911 (2016)

    Google Scholar 

  24. Wang, J.S., Hsu, Y.L., Liu, J.N.: An inertial-measurement-unit-based pen with a trajectory reconstruction algorithm and its applications. IEEE Trans. Ind. Electron. 57, 3508–3521 (2010)

    Article  Google Scholar 

  25. Park, M., Gao, Y.: Error and performance analysis of mems-based inertial sensors with a low-cost GPS receiver. Sensors 8, 2240–2261 (2008)

    Article  Google Scholar 

  26. Mourikis, A.I., Trawny, N., Roumeliotis, S.I., Johnson, A.E., Ansar, A., Matthies, L.: Vision-aided inertial navigation for spacecraft entry, descent, and landing. IEEE Trans. Robot. 25, 264–280 (2009)

    Article  Google Scholar 

  27. Lee, T., Leoky, M., McClamroch, N.H.: Geometric tracking control of a quadrotor UAV on SE (3). In: 2010 49th IEEE Conference on Decision and Control (CDC), pp. 5420–5425 (2010)

    Google Scholar 

  28. Bristeau, P.J., Callou, F., Vissiere, D., Petit, N.: The navigation and control technology inside the AR. Drone micro UAV. In: IFAC Proceedings, vol. 44, pp. 1477–1484 (2011)

    Article  Google Scholar 

  29. Antoniou, A.: Digital Signal Processing. McGraw-Hill, New York (2016)

    Google Scholar 

  30. Zhang, J., Feng, J., Zhou, B.: Sensor-fusion-based trajectory reconstruction for mobile devices. In: Proceedings of the 13th International Conference on Computer Graphics Theory and Applications, pp. 48–58 (2018)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by National Key Research and Development Program of China (2016QY02D0304) and NSFC grants (61602012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jielei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Feng, J., Zhou, B. (2019). Sensor-Fusion-Based Trajectory Reconstruction for Quadrotor Drones. In: Bechmann, D., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2018. Communications in Computer and Information Science, vol 997. Springer, Cham. https://doi.org/10.1007/978-3-030-26756-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26756-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26755-1

  • Online ISBN: 978-3-030-26756-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics