Skip to main content

Palm Recognition Using the Adaptive LWT Based Sparse Representation Method

  • Conference paper
  • First Online:
  • 1416 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11643))

Abstract

To extract the essential features from a relatively small number of sampling set and further improve the feature recognition precision of images, a novel palm recognition method using the adaptive lifting wavelet transform (ALWT) based sparse representation (SR) algorithm is proposed here. This lifting wavelet behaves local texture features in spatial and the fast operation speed. While SR method can effectively represent structure features of images and behaves adaptive denoising characteristics. First, the ALWT method is used to extract high frequency coefficient set and low frequency coefficient set of test images, and then, respectively using the high frequency and low frequency set as the input samples of SR model, the high frequency dictionary denoised and low sparse dictionary can be learned. Furthermore, the high and low frequency dictionaries are fused by weighted coefficient, the sparse dictionary behaved texture features can be obtained. Here the SR model is selected as the one based on fast sparse coding (FSC). Finally, using several classical classifiers to test the validity of extracted features. In test, all palmprint images are selected randomly from the PolyU palmprint database. Experimental results testify the better recognition performance of the proposed algorithm compared with PCA and the common SR model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Connie, T., Teoh, A., Goh, M., et al.: Palmprint recognition with PCA and ICA. Image Vis. Comput. NZ 3, 227–232 (2003)

    Google Scholar 

  2. Zhang, D., Hong, W.-K., You, J.: Online palmprint identification. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1041–1050 (2003)

    Article  Google Scholar 

  3. Liu, S., Fang, Y.: A contourlet-transform based sparse ICA algorithm for blind image separation. J. Shanghai Univ. (English Edition) 11, 464–468 (2007)

    Article  MathSciNet  Google Scholar 

  4. Li, W., David, Z., Xu, Z.: Palmprint identification by Fourier transform. Int. J. Pattern Recogn. Artif. Intell. 16(4), 417–432 (2002)

    Article  Google Scholar 

  5. Shang, L., Huai, W., Dai, G., Chen, J., Du, J.: Palmprint recognition using 2D-Gabor wavelet based sparse coding and RBPNN classifier. In: Zhang, L., Lu, B.-L., Kwok, J. (eds.) ISNN 2010. LNCS, vol. 6064, pp. 112–119. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13318-3_15

    Chapter  Google Scholar 

  6. Lian, Q., Zhang, J., Chen, S., et al.: Single image super-resolution algorithm based on two-stage and multi-frequency-band dictionaries. ACTA Automatica Sinica 39(8), 1310–1320 (2013)

    Article  MathSciNet  Google Scholar 

  7. Rubinstein, R., Bruckstein, A., Elad, M.: Dictionaries for sparse representation modeling. IEEE Proc. 98(6), 1045–1057 (2010)

    Article  Google Scholar 

  8. Li, Y.R., Dai, D.Q., Shen, L., et al.: Multiframe super-resolution reconstruction using sparse directional regularization. IEEE Trans. Circuits Syst. Video Technol. 20(7), 945–956 (2010)

    Article  Google Scholar 

  9. Zhang, J., Cheng, L., Yang, H., et al.: Adaptive lifting wavelet transform and image compression via texture. Chin. J. Comput. 33(1), 184–192 (2010)

    Article  Google Scholar 

  10. Zhao, D., Pan, X., Liu, X., et al.: Palmprint recognition based on lift wavelet and deep learning. Comput. Simul. 33(10), 338–342 (2016)

    Google Scholar 

  11. Claypoole, R.L., Baraniukm, R.G., Nowark, R.D., et al.: Adaptive wavelet transform via lifting scheme. In: Proceedings IEEE Conference on Acoustics, Speech and Signal Processing, Phoenix, USA, vol. 12, pp. 1513–1518 (1998)

    Google Scholar 

  12. Sweldens, W.: The lifting scheme: a construction of second generation wavelets. SJAM J. Math. Anal. 29(2), 511–546 (1996)

    Article  MathSciNet  Google Scholar 

  13. Kim, K.L., Ra, S.W.: Performance improvement of the SPIHT coder. Signal Process. Image Commun. 19, 29–36 (2004)

    Article  Google Scholar 

  14. Fan, W., Chen, J., Zhen, J.: SPIHT algorithm based on fast lifting wavelet transform in image compression. In: Hao, Y., et al. (eds.) CIS 2005. LNCS (LNAI), vol. 3802, pp. 838–844. Springer, Heidelberg (2005). https://doi.org/10.1007/11596981_122

    Chapter  Google Scholar 

  15. Daubechies, I., Sweldens, W.: Factoring wavelet transforms into lifting steps. J. Fourier Anal. Appl. 4(3), 245–267 (1998)

    Article  MathSciNet  Google Scholar 

  16. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  17. Yang, J., Wang, Z., Lin, Z., et al.: Coupled dictionary training for image super-resolution. IEEE Trans. Image Process. 21(8), 3467–3478 (2012)

    Article  MathSciNet  Google Scholar 

  18. Thiagarajan, J.J., Ramamurthy, K.N., Spanias, A.: Multiple Kernel sparse representations for supervised and unsupervised learning. IEEE Trans. Image Process. 23(7), 2905–2915 (2014)

    Article  MathSciNet  Google Scholar 

  19. Lee, H., Battle, A., Raina, R.: Efficient sparse coding algorithms. In: The Proceedings of Neural Information Processing Systems (NIPS2007), pp. 801–808, Vancouver, B.C., Canada (2007)

    Google Scholar 

Download references

Acknowledge

This work was supported by the grants from National Nature Science Foundation of China (Grant No. 61373098), the “333” Project Scientific Research Foundation of Jiangsu Province of China and the Qinlan project of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Shang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shang, L., Zhou, Y., Sun, Zl. (2019). Palm Recognition Using the Adaptive LWT Based Sparse Representation Method. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theories and Application. ICIC 2019. Lecture Notes in Computer Science(), vol 11643. Springer, Cham. https://doi.org/10.1007/978-3-030-26763-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26763-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26762-9

  • Online ISBN: 978-3-030-26763-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics