Skip to main content

Cascade Dense-Unet for Prostate Segmentation in MR Images

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11643))

Included in the following conference series:

Abstract

Automatic prostate segmentation from magnetic resonance images can assist in diagnosis and radiological planning. The extensive clinical application of this task has attracted the attention of researchers. However, due to noise, blurred boundaries and scale variation, it is very challenging to segment prostate from magnetic resonance images. We propose a cascade method for prostate segmentation. The model consists of two stage. In the first stage, a dense-unet model are used to obtain the initial segmentation results. In the second stage, the segmentation result of the first stage is used as prior knowledge, and another dense-unet is used to obtain more accurate segmentation results. The experimental results show that the proposed method can obtain more accurate segmentation results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vos, P., Barentsz, J., Karssemeijer, N., Huisman, H.: Automatic computer-aided detection of prostate cancer based on multiparametric magnetic resonance image analysis. Phys. Med. Biol. 57(6), 1527 (2012)

    Article  Google Scholar 

  2. Toth, R., et al.: Accurate prostate volume estimation using multifeature active shape models on T2-weighted MRI. Acad. Radiol. 18(6), 745–754 (2011)

    Article  Google Scholar 

  3. Klein, S., vander Heide, U., Lipps, I., Vulpen, M., Staring, M., Pluim, J.: Automatic segmentation of the prostate in 3-D MR images by atlas matching using localized mutual information. Med. Phys. 35(4), 1407–1417 (2008)

    Article  Google Scholar 

  4. Martin, S., Daanen, V., Troccaz, J.: Automated segmentation of the prostate 3-D MR images using a probabilistic atlas and a spatially constrained deformable model. Med. Phys. 37(4), 1579–1590 (2010)

    Article  Google Scholar 

  5. Ou, Y., Doshi, J., Erus, G., Davatzikos, C.: Multi-atlas segmentation of the prostate: a zooming process with robust registration and atlas selection. In: 2012 MICCAI Grand Challenge: Prostate MR Image Segmentation (2012)

    Google Scholar 

  6. Yan, P., Cao, Y., Yuan, Y., Turkbey, B., Choyke, P.L.: Label image constrained multi-atlas selection. IEEE Trans. Cybernet. 45(6), 1158–1168 (2015)

    Article  Google Scholar 

  7. Pasquier, D., Lacornerie, T., Vermandel, M., Rousseau, J., Lartigau, E., Betrouni, N.: Automatic segmentation of pelvic structures from magnetic resonance images for prostate cancer radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 68(2), 592–600 (2007)

    Article  Google Scholar 

  8. Makni, N., Puech, P., Lopes, R., Dewalle, A.: Combining a deformable model and a probabilistic framework for an automatic 3-D segmentation of prostate on MRI. Int. J. Comput. Assisted. Radiol. Surg. 4(2), 181–188 (2009)

    Article  Google Scholar 

  9. Toth, R., Madabhushi, A.: Multifeature landmark-free active appearance models: Application to prostate MRI segmentation. IEEE Trans. Med. Imag 31(8), 1638–1650 (2012)

    Article  Google Scholar 

  10. Moschidis E., Graham, J.: Automatic differential segmentation of the prostate in 3-D MRI using random forest classification and graph cuts optimization. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, pp. 1727–1730 (2012)

    Google Scholar 

  11. Zouqi M., Samarabandu, J.: Prostate segmentation from 2-D ultrasound images using graph cuts and domain knowledge. In: Proceedings of the Conference on Computer and Robot Vision, pp. 359–362 (2008)

    Google Scholar 

  12. Tian, Z., Liu, L., Zhang, Z., Fei, B.: Superpixel-based segmentation for 3D prostate MR images. IEEE Trans. Med. Imaging 35(3), 791–801 (2016)

    Article  Google Scholar 

  13. Guo, Y., Gao, Y., Shen, D.: Deformable MR prostate segmentation via deep feature learning and sparse patch matching. IEEE Trans. Med. Imaging 35(4), 1077–1089 (2016)

    Article  Google Scholar 

  14. Jia, H., Xia, Y., Song, Y., Cai, W., Fulham, M., Feng, D.D.: Atlas registration and en- semble deep convolutional neural network-based prostate segmentation using magnetic resonance imaging. Neurocomputing 275, 1358–1369 (2017)

    Article  Google Scholar 

  15. Milletari, F., Navab, N., Ahmadi, S.-A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  16. Yu, L., Yang, X., Chen, H., Qin, J., Heng, P.-A.: Volumetric ConvNets with mixed residual connections for automated prostate segmentation from 3D MR images. In: AAAI, pp. 66–72 (2017)

    Google Scholar 

  17. Yan, K., Wang, X., Kim, J., et al.: A propagation-DNN: deep combination learning of multi-level features for MR prostate segmentation. Comput. Methods Programs Biomed. 170, 11–21 (2019)

    Article  Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Zhu, Q., Du, B., Turkbey, B., Choyke, P., Yan, P.: Exploiting interslice correlation for MRI prostate image segmentation, from recursive neural networks aspect. Complexity, vol. 10 (2018)

    Google Scholar 

  20. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C., Heng, P.: H-DenseUNet: hybrid densely connected UNet for liver and liver tumor segmentation from CT volumes. IEEE Trans. Med. Imaging 37(12), 2663–2674 (2018)

    Article  Google Scholar 

  21. Yu, L., Cheng, J.-Z., Dou, Q., Yang, X., Chen, H., Qin, J., Heng, P.-A.: Automatic 3D cardiovascular MR segmentation with densely-connected volumetric ConvNets. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 287–295. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_33

    Chapter  Google Scholar 

  22. Chen, H., Dou, Q., Yu, L., Heng, P.-A.: VoxResNet: deep voxelwise residual networks for volumetric brain segmentation. arXiv preprint arXiv:1608.05895 (2016)

  23. Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely connected convolutional networks. CoRR, abs/1608.06993 (2016)

    Google Scholar 

  24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  25. Litjens, G., et al.: Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. Med. Image Anal. 18(2), 359–373 (2014)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by Shanghai Science and Technology Commission (grant No. 17511104203) and NSFC (grant NO. 61472087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, S., Chen, Y., Yang, S., Luo, W. (2019). Cascade Dense-Unet for Prostate Segmentation in MR Images. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theories and Application. ICIC 2019. Lecture Notes in Computer Science(), vol 11643. Springer, Cham. https://doi.org/10.1007/978-3-030-26763-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26763-6_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26762-9

  • Online ISBN: 978-3-030-26763-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics