Skip to main content

Implementing Arbitrary CRNs Using Strand Displacing Polymerase

  • Conference paper
  • First Online:
DNA Computing and Molecular Programming (DNA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11648))

Included in the following conference series:

Abstract

The regulation of cellular and molecular processes typically involves complex biochemical networks. Synthetic nucleic acid reaction networks (both enzyme-based and enzyme-free) can be systematically designed to approximate sophisticated biochemical processes. However, most of the prior experimental protocols for reaction networks relied on either strand-displacement hybridization or restriction and exonuclease enzymatic reactions. These resulting synthetic systems usually suffer from either slow rates or leaky reactions. In this work, we propose an alternative architecture to implement arbitrary reaction networks, that is based entirely on strand-displacing polymerase reactions with non-overlapping I/O sequences. We first design a simple protocol that approximates arbitrary unimolecular and bimolecular reactions using polymerase strand displacement reactions. Then we use these fundamental reaction systems as modules to show three large-scale applications of our architecture, including an autocatalytic amplifier, a molecular-scale consensus protocol, and a dynamic oscillatory system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bui, H., Shah, S., Mokhtar, R., Song, T., Garg, S., Reif, J.: Localized DNA hybridization chain reactions on DNA origami. ACS Nano 12(2), 1146–1155 (2018)

    Article  Google Scholar 

  2. Cardelli, L., Csikász-Nagy, A.: The cell cycle switch computes approximate majority. Sci. Rep. 2, 656 (2012)

    Article  Google Scholar 

  3. Chandran, H., Gopalkrishnan, N., Phillips, A., Reif, J.: Localized hybridization circuits. In: Cardelli, L., Shih, W. (eds.) DNA 2011. LNCS, vol. 6937, pp. 64–83. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23638-9_8

    Chapter  Google Scholar 

  4. Chen, H.L., Doty, D., Soloveichik, D.: Deterministic function computation with chemical reaction networks. Nat. Comput. 13(4), 517–534 (2014)

    Article  MathSciNet  Google Scholar 

  5. Chen, H.L., Doty, D., Soloveichik, D.: Rate-independent computation in continuous chemical reaction networks. In: Proceedings of the 5th Conference on Innovations in Theoretical Computer Science, pp. 313–326. ACM (2014)

    Google Scholar 

  6. Chen, Y.J., et al.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8(10), 755–762 (2013)

    Article  Google Scholar 

  7. Cherry, K.M., Qian, L.: Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks. Nature 559(7714), 370 (2018)

    Article  Google Scholar 

  8. Dalchau, N., et al.: Computing with biological switches and clocks. Nat. Comput. 17(4), 761–779 (2018)

    Article  MathSciNet  Google Scholar 

  9. Eshra, A., Shah, S., Song, T., Reif, J.: Renewable DNA hairpin-based logic circuits. IEEE Trans. Nanotechnol. 18, 252–259 (2019)

    Article  Google Scholar 

  10. Fu, D., Shah, S., Song, T., Reif, J.: DNA-based analog computing. In: Braman, J.C. (ed.) Synthetic Biology. MMB, vol. 1772, pp. 411–417. Springer, New York (2018). https://doi.org/10.1007/978-1-4939-7795-6_23

    Chapter  Google Scholar 

  11. Fujii, T., Rondelez, Y.: Predator-prey molecular ecosystems. ACS Nano 7(1), 27–34 (2012)

    Article  Google Scholar 

  12. Garg, S., Shah, S., Bui, H., Song, T., Mokhtar, R., Reif, J.: Renewable time-responsive DNA circuits. Small 14(33), 1801470 (2018)

    Article  Google Scholar 

  13. Han, D., et al.: Single-stranded DNA and RNA origami. Science 358(6369), eaao2648 (2017)

    Article  Google Scholar 

  14. Jiang, Y.S., Bhadra, S., Li, B., Ellington, A.D.: Mismatches improve the performance of strand-displacement nucleic acid circuits. Angew. Chem. 126(7), 1876–1879 (2014)

    Article  Google Scholar 

  15. Joesaar, A., et al.: DNA-based communication in populations of synthetic protocells. Nat. Nanotechnol. 14, 369 (2019)

    Article  Google Scholar 

  16. Johnson-Buck, A., Shih, W.M.: Single-molecule clocks controlled by serial chemical reactions. Nano Lett. 17(12), 7940–7944 (2017)

    Article  Google Scholar 

  17. Kim, J., Winfree, E.: Synthetic in vitro transcriptional oscillators. Mol. Syst. Biol. 7(1), 465 (2011)

    Article  Google Scholar 

  18. Kishi, J.Y., Schaus, T.E., Gopalkrishnan, N., Xuan, F., Yin, P.: Programmable autonomous synthesis of single-stranded DNA. Nat. Chem. 10(2), 155 (2018)

    Article  Google Scholar 

  19. Li, J., Johnson-Buck, A., Yang, Y.R., Shih, W.M., Yan, H., Walter, N.G.: Exploring the speed limit of toehold exchange with a cartwheeling DNA acrobat. Nat. Nanotechnol. 13(8), 723 (2018)

    Article  Google Scholar 

  20. Montagne, K., Plasson, R., Sakai, Y., Fujii, T., Rondelez, Y.: Programming an in vitro DNA oscillator using a molecular networking strategy. Mol. Syst. Biol. 7(1), 466 (2011)

    Article  Google Scholar 

  21. Newman, S., et al.: High density DNA data storage library via dehydration with digital microfluidic retrieval. Nat. Commun. 10(1), 1706 (2019)

    Article  Google Scholar 

  22. Notomi, T., et al.: Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28(12), e63–e63 (2000)

    Article  Google Scholar 

  23. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)

    Article  Google Scholar 

  24. Scalise, D., Dutta, N., Schulman, R.: DNA strand buffers. J. Am. Chem. Soc. 140(38), 12069–12076 (2018)

    Article  Google Scholar 

  25. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314(5805), 1585–1588 (2006)

    Article  Google Scholar 

  26. Seo, J., Kim, S., Park, H.H., Nam, J.M., et al.: Nano-bio-computing lipid nanotablet. Sci. Adv. 5(2), eaau2124 (2019)

    Article  Google Scholar 

  27. Shah, S., Dubey, A., Reif, J.: Programming temporal DNA barcodes for single-molecule fingerprinting. Nano Lett. 19, 2668–2673 (2019)

    Article  Google Scholar 

  28. Shah, S., Dubey, A.K., Reif, J.: Improved optical multiplexing with temporal DNA barcodes. ACS Synth. Biol. 8(5), 1100–1111 (2019)

    Article  Google Scholar 

  29. Shah, S., Gupta, M.: DNA-based chemical compiler (2018). arXiv preprint arXiv:1808.04790

  30. Shah, S., Limbachiya, D., Gupta, M.K.: DNACloud: a potential tool for storing big data on DNA (2013). arXiv preprint arXiv:1310.6992

  31. Shah, S., Reif, J.: Temporal DNA barcodes: a time-based approach for single-molecule imaging. In: Doty, D., Dietz, H. (eds.) DNA 2018. LNCS, vol. 11145, pp. 71–86. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00030-1_5

    Chapter  MATH  Google Scholar 

  32. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Nat. Acad. Sci. 107(12), 5393–5398 (2010)

    Article  Google Scholar 

  33. Song, T., et al.: Improving the performance of DNA strand displacement circuits by shadow cancellation. ACS Nano 12(11), 11689–11697 (2018)

    Article  Google Scholar 

  34. Srinivas, N., et al.: On the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucleic Acids Res. 41(22), 10641–10658 (2013)

    Article  Google Scholar 

  35. Srinivas, N., Parkin, J., Seelig, G., Winfree, E., Soloveichik, D.: Enzyme-free nucleic acid dynamical systems. Science 358(6369), eaal2052 (2017)

    Article  Google Scholar 

  36. Teichmann, M., Kopperger, E., Simmel, F.C.: Robustness of localized DNA strand displacement cascades. ACS Nano 8(8), 8487–8496 (2014)

    Article  Google Scholar 

  37. Thubagere, A.J., et al.: A cargo-sorting DNA robot. Science 357(6356) (2017)

    Article  Google Scholar 

  38. Walker, G.T., Little, M.C., Nadeau, J.G., Shank, D.D.: Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc. Nat. Acad. Sci. 89(1), 392–396 (1992)

    Article  Google Scholar 

  39. Wang, B., Thachuk, C., Ellington, A.D., Winfree, E., Soloveichik, D.: Effective design principles for leakless strand displacement systems. Proc. Nat. Acad. Sci. 115(52), E12182–E12191 (2018)

    Article  Google Scholar 

  40. Yordanov, B., Kim, J., Petersen, R.L., Shudy, A., Kulkarni, V.V., Phillips, A.: Computational design of nucleic acid feedback control circuits. ACS Synth. Biol. 3(8), 600–616 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation Grants CCF-1813805 and CCF-1617791. The authors thank Keerti Anand for useful theoretical discussions on ODEs and chemical kinetics. The most up-to-date simulation scripts are available online as a GitHub repository at https://bit.ly/2X3axAh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalin Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shah, S., Song, T., Song, X., Yang, M., Reif, J. (2019). Implementing Arbitrary CRNs Using Strand Displacing Polymerase. In: Thachuk, C., Liu, Y. (eds) DNA Computing and Molecular Programming. DNA 2019. Lecture Notes in Computer Science(), vol 11648. Springer, Cham. https://doi.org/10.1007/978-3-030-26807-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26807-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26806-0

  • Online ISBN: 978-3-030-26807-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics