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Abstract. Self-assembly refers to the process by which small, simple
components mix and combine to form complex structures using only lo-
cal interactions. Designed as a hybrid between tile assembly models and
cellular automata, the Tile Automata (TA) model was recently intro-
duced as a platform to help study connections between various models
of self-assembly. However, in this paper we present a result in which
we use TA to simulate arbitrary systems within the amoebot model, a
theoretical model of programmable matter in which the individual com-
ponents are relatively simple state machines that are able to sense the
states of their neighbors and to move via series of expansions and con-
tractions. We show that for every amoebot system, there is a TA system
capable of simulating the local information transmission built into amoe-
bot particles, and that the TA “macrotiles” used to simulate its particles
are capable of simulating movement (via attachment and detachment op-
erations) while maintaining the necessary properties of amoebot particle
systems. The TA systems are able to utilize only the local interactions of
state changes and binding and unbinding along tile edges, but are able
to fully simulate the dynamics of these programmable matter systems.

Keywords: programmable matter · simulation · self-assembly · tile automata ·
amoebot model

1 Introduction

Theoretical models of self-assembling systems are mathematical models that al-
low for the exploration of the limits of bottom-up construction and self-assembly
via simple (usually square) tiles. There are a wide variety of tile-based models
of self-assembly (e.g., [12, 13, 15, 16, 19–21]), each with differing constraints and
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dynamics, resulting in great variations in the relative powers between systems.
One of the easiest ways to evaluate their relationships is to use notions of sim-
ulation to attempt to simulate one model by another, and this has led to the
creation of a “complexity hierarchy” of self-assembly models and categories of
systems [7, 11,14,17,22].

Another category of theoretical models attempts to capture the dynamics
of so-called programmable matter, in which small and simple, but dynamic and
mobile, components are able to interact with each other to form structures,
perform tasks and computations, etc. [6, 23].

This paper attempts to bridge the divide between these categories of mod-
els, showing how self-assembling tiles can mimic the behaviors of programmable
matter. Specifically, we demonstrate how the recently introduced Tile Automata
(TA) model [4] can be used to simulate the amoebot model [6]. In the TA model,
the fundamental components are unit square tiles which form structures by at-
taching and forming bonds, and can also change states based on their own states
and those of their neighbors, causing them to be able to form new bonds or to
remove existing bonds. The basic components in the amoebot model are particles
which can also change their states based on the current states of themselves and
their neighbors, but which can also move via series of expansions and contrac-
tions. While the components of both models rely only upon local information
and communication, the design goals of their systems tend to differ fundamen-
tally. The main goal of TA systems is to self-assemble into target structures,
but amoebot systems have been used to solve system-level problems of move-
ment and coordination (e.g., shape formation [8], object coating [9], leader elec-
tion [5], gathering [3], bridging gaps [1], etc.). We present a construction in which
constant-sized assemblies of TA tiles, called macrotiles, assemble and disassem-
ble following the rules of the TA model and are able to simulate the behaviors
of individual amoebot particles. Via carefully designed processes of building and
breaking apart assemblies, they are collectively able to correctly simulate the full
dynamics of amoebot systems. We thus show how the dynamics of systems of
self-assembling tiles with the ability to form and break bonds can be harnessed
to faithfully simulate the dynamics of collections of programmable matter par-
ticles capable of local communication and motion. Not only does this provide a
way to connect and leverage existing results across models, this also provides a
new paradigm for designing systems to accomplish the goals of programmable
matter. It additionally allows amoebots to serve as a higher-level abstraction for
designing systems exhibiting complex behaviors of programmable matter but
with a translation to implementation in TA.

The paper is organized as follows. Section 2 presents a high-level definition
of the TA model, and Section 3 provides a full mathematical definition for the
amoebot model. (We note that this is the first full mathematical definition for the
amoebot model and thus is also a contribution of this paper.) Section 4 gives the
formal definition, preliminaries, and overview of the simulation of the amoebot
model by TA, while Section 5 gives more of its details. A brief discussion and
conclusion are given in Section 6, and a Technical Appendix contains a more
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rigorous definition of the TA model, as well as low-level technical details about
the construction.

2 The Tile Automata Model

The Tile Automata model seeks to connect and evaluate the differences between
some of the seemingly disparate models of tile-based self assembly by combining
components of the Two Handed Assembly Model (2HAM) of self-assembly with a
rule set of local state changes that are similar to asynchronous cellular automata.
This section provides an overview of the TA model which is sufficient for the
purposes of this paper, however a more thorough and detailed definition of the
TA model is available in the technical appendix, which is based on [4].

Fig. 1: Example of a TA system. The five components that define a TA system
constitute the left and middle columns of this figure, while the rightmost boxes
indicate producible and terminal assemblies.

The Tile Automata Model has many similarities with other tile based self
assembly systems. Tiles, the fundamental units of this model that interact with
one another, use only local information, in this case the state of their neighbors.
Tiles exist as a stateful unit square centered on a point on the square lattice
over the integers in two dimensions, so that a tile’s coordinates (x, y) ∈ Z2. Tiles
may form bonds with adjacent neighbors via attaching to one another according
to the affinity function, which defines a set of two states and either a vertical
or horizontal relative orientation (denoted as ⊥ and `, respectively) as well as
an attachment strength. A connection between tiles or groups of connected tiles
must have the property of τ stability to persist. Every TA system has defined
an integer stability threshold or τ that represents the minimum strength bond
with which tiles must be bound in order to be τ stable. Two adjacent tiles of
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states s, s′, with the tile of state s directly to the right of the tile of state s′, will
form an attachment if there exists a rule in the affinity function (s′ ` s ≥ τ). An
assembly is a τ stable connected set of TA tiles, with the property that there
exists no way to separate the tiles without breaking bonds of at least τ strength.
Further, a pair of tiles may transition according to a transition rule that takes
as input two adjacent tiles (oriented by either ⊥ or `) and outputs new states
for those tiles. So the tiles in our example of s′ ` s may transition to states t ` s
if there exists a rule in the set of transition rules provided in the definition of a
TA system of the form (s′, s, t, s,`), where (s′, s) are the input states, (t, s) are
the output states, and ` is their relative orientation.

Fig. 2: Depiction of signal S being passed down a wire. The W tiles represent
wires in their default state, and the grey tiles above and below the wire are
filler tiles. Starting in state in (a) and a transition rule (SW ` SS), the signal
propagates down the wire in (b) and (c).

2.1 Wire Transmission

One of the most useful aspects of the Tile Automata model is the tiles’ ability
to transition states based on local information. This capability makes commu-
nication from one group of tiles to another, non-adjacent group easy, with a
structure we will call a wire. A wire in TA is a contiguous line of tiles from one
group of tiles to another, usually surrounded by inert filler tiles so as to avoid
interference with the signal being transmitted. (See Figure 2 for an example.)

3 The Amoebot Model

Introduced in [10], the amoebot model is an abstract computational model of
programmable matter, a substance that can change its physical properties based
on user input or stimuli from its environment. The amoebot model envisions
programmable matter as a collection of individual, homogeneous computational
elements called particles. In what follows, we extend the exposition of the model
in [6] to the level of formality needed for our simulation.

Any structure a particle system can form is represented as a subgraph of an
infinite, undirected graph G = (V,E) where V is the set of positions a particle
can occupy and E is the set of all atomic movements a particle can make. Each
node in V can be occupied by at most one particle at a time. This work further
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assumes the geometric amoebot model where G = G∆, the triangular lattice with
nearest neighbor connectivity (see Fig. 3a). This lattice is preferred for work in
the 2D plane, as it allows for a maximum of nearest neighbor connectivity for
particles moving step wise around the perimeter of the particle swarm. Particles
attempting to move around a “corner” of a particle swarm risk disconnection
with the neighborhood implied by nearest neighbor connectivity on the square
lattice. Each particle occupies either a single node in V (i.e., it is contracted) or
a pair of adjacent nodes in V (i.e., it is expanded), as in Fig. 3b. Two particles
occupying adjacent nodes of G∆ are neighbors. We further will define a group of
particles as a particle system.

(a) (b)
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2
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12

3
4 5

6
7
8
9

(c)

Fig. 3: (a) A section of the triangular lattice G∆ (black) and its dual, the hexag-
onal tiling (gray). (b) Expanded and contracted particles (black dots) on G∆
(gray lattice). Particles with a black line between their nodes are expanded. (c)
Two particles with different orientations. The expanded particle’s tail port would
be 6 if its head were the upper node; the contracted particle’s tail port is ε.

Each particle keeps a collection of ports — one for each edge incident to the
node(s) it occupies — that have unique labels from its own perspective. Con-
tracted particles have six ports while expanded particles have ten (see Fig. 3c).
The particles are assumed to have a common sense of clockwise direction (a.k.a.
chirality), but do not share a coordinate system or global compass. Thus, par-
ticles can label their ports in clockwise order starting from a local direction 0,
but may have different orientations in O = {0, 1, ..., 5} encoding their offsets for
local direction 0 from global direction 0 (to the right).

For example, in Fig. 3c, the particle on the right has orientation 0 (i.e., it
agrees with the global compass) while the particle on the left has orientation 4
(i.e., its local direction 0 is global direction 4). When a particle expands, it keeps
its port labeling consistent by assigning label 0 to a port facing local direction
0 and then labeling the remaining ports in clockwise order.4 In this way, it can
recover its original labeling when it later contracts. A particle p communicates
with a neighbor q by placing a flag from the constant-size alphabet Σ on its port
facing q. This can be thought of as p sending a message for q to read when q is
next activated. Conversely, p receives information from q by reading the flag q

4 Note that there may be ambiguity in choosing a port facing local direction 0; e.g.,
in Fig. 3c, both port 0 and port 8 face local direction 0. In this case, the port facing
local direction 0 and “away” from the particle is labeled 0.
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has placed on its port facing p. The flag alphabet Σ is assumed to contain the
“empty flag” ε to be used when no information is being communicated.

Particles move via a series of expansions and contractions: a contracted par-
ticle can expand into an unoccupied adjacent node to become expanded, and
may then contract to occupy a single node once again. An expanded particle’s
head is the node it last expanded into and the other node it occupies is its tail ;
a contracted particle’s head and tail are the same. If an expanded particle con-
tracts into its head node, it has moved. Otherwise, contracting back into its tail
node can be thought of as the particle exploring a potential location to which it
could expand but deciding not to over the course of two activations. Neighboring
particles can coordinate their movements in a handover, which can occur one of
two ways. A contracted particle p can “push” an expanded neighbor q by ex-
panding into one of the nodes occupied by q, forcing q to contract. Alternatively,
an expanded particle q can “pull” a contracted neighbor p by contracting, forc-
ing p to expand into the node it is vacating. During its movements, each particle
maintains a tail port in T = {0, 1, . . . , 9} ∪ {ε} denoting the port furthest from
its head if it is expanded or ε if it is contracted (see Fig. 3c). This information
serves as the particle’s memory about whether or not it is expanded, and, if so,
what direction its tail is relative to its head.

More formally, the set of all possible movements is M = {idle} ∪ {expandi :
i ∈ 0, 1, . . . , 5} ∪ {contracti : i ∈ 0, 1, ..., 9} ∪ {handoveri : i ∈ 0, 1, ..., 5}. An
idle move simply means the particle does not move. If a particle p performs
expandi, p expands into the node its i-th port faces only if p is contracted and
that node is unoccupied. If a particle p performs contracti, p contracts out of
the node incident to its i-th port only if p is expanded. The handoveri moves are
not push or pull handover specific, nor do they actually perform the handover
movements described above. Instead, a particle p performs handoveri when it
initiates a handover with the neighbor its i-th port faces, say q. This initiation
only succeeds if a neighboring particle q actually exists and p is contracted while
q is expanded (or vice versa). To aid in executing the initiated handover —
which will be described shortly — each particle keeps an expansion direction in
E = 0, 1, ..., 5 ∪ {ε} denoting the local direction it would like to expand in or ε
if no expansion is needed.

The amoebot model assumes that particle systems progress by individual
particles performing atomic actions asynchronously, where each particle inde-
pendently and continuously executes its own instance of the given algorithm at
potentially varying speeds. Assuming any conflicts that may arise in this con-
current execution are resolved — as is the case in the amoebot model, see [6]
— a classical result under the asynchronous model states that there is a sequen-
tial ordering of atomic actions producing the same end result. Thus, we assume
there is an activation scheduler responsible for activating exactly one particle
at a time. This scheduler is assumed to be fair : each particle is assumed to be
activated infinitely often. When a particle p is activated by the scheduler, it
computes its transition function δ and applies the results:
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δ : Q×Σ10 × T × E → P(Q×Σ10 × T × E ×M).

For a given algorithm under the amoebot model, Q is a constant-size set
of particle states while the flag alphabet Σ, the tail ports T , the expansion
directions E, and the movements M are as defined above. The transition function
δ allows a particle to use its state, its neighbors’ flags facing it, its tail port, and
its expansion direction to update these values and decide whether to move. If δ
maps a unique input to multiple outputs, one output set is chosen arbitrarily. δ
largely depends on the algorithm being executed; here, we describe a few general
rules for δ our simulation will consider. Suppose that δ(q, (f0, f1, . . . , f9), t, e) =
(q′, (f ′0, f

′
1, . . . , f

′
9), t′, e′,m′).

– The movement m′ must be valid according to the defined movement rules;
e.g., if m′ = expandi, particle p must be contracted and the node its i-th
port faces must be unoccupied.

– If t = ε, then f6 = · · · = f9 = ε; i.e., if particle p is contracted, it cannot set
flags for ports it doesn’t have. This holds also for t′ and (f ′6, . . . , f

′
9).

– If e 6= ε, then t = ε; i.e., particle p can only intend to expand in local
direction e if it is contracted. This holds also for e′ and t′.

– If m′ = expandi, then t′ 6= ε and e′ = ε; i.e., if particle p expands in lo-
cal direction i, it will be expanded (setting t′ to the label opposite i after
expansion) and should not intend to expand again immediately.

– If e 6= ε, then either m′ = expande or m′ = idle. That is, if particle p intends
to expand in local direction e this activation, it either does so or has to wait.

– If m′ = contracti, then t′ = ε.

It remains to describe how handovers are executed with respect to δ. In a
concurrent execution, a handover is performed as a coordinated, simultaneous
expansion and contraction of two neighboring particles. In our sequential setting,
however, we instead use a local synchronization mechanism to ensure the con-
tracting particle moves first, followed by the expanding particle. To achieve this,
we make one change to the scheduler. Whenever a particle p returns a movement
m′ = handoveri as output from δ, the scheduler finds the neighbor q facing the
i-th port of p and ensures that the next three particles to be activated are q,
then p, then q again.5 We first describe a pull handover initiated by an expanded
particle p with a contracted neighbor q.

1. Suppose p is chosen by the scheduler. Based on its state, its neighbors’ flags
facing it, its tail port indicating it is expanded, and its (empty) expansion
direction, suppose δ returns m′ = handoveri. δ must also set f ′i to a handover
flag indicating that p has initiated a handover with its neighbor.

2. On seeing m′ = handoveri returned, the scheduler finds neighbor q (the
neighbor faced by the i-th port of p) and schedules [q, p, q] as the next three
particles to be activated. It activates q.

5 Note that this forced scheduling is simply a result of our formalism and does not
alter or subvert the underlying asynchrony assumed by the amoebot model.
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3. Based on the inputs to δ for particle q, and in particular the handover flag
fj from p and the fact that it is contracted, δ must evaluate such that q sets
f ′j as a will-expand flag, sets e′ = j, and sets m′ = idle.

4. The scheduler now has [p, q], so it activates p.
5. Based on the inputs to δ for particle p, and in particular the will-expand flag
fi from q, δ must evaluate such that it clears f ′i = ε and sets m′ = contracti
(setting t′ = ε, following the rules above). Thus, it contracts.

6. The scheduler now has [q], so it activates q.
7. Based on the inputs to δ for particle q, and in particular its expansion direc-

tion e = j, δ must evaluate such that q clears f ′j = ε and sets m′ = expande
(setting t′ to the corresponding tail port opposite e).

8. The scheduler has no queued activations, so it chooses arbitrarily but fairly.

A push handover initiated by a contracted particle p with an expanded neigh-
bor q is handled similarly. The first activation of p is the same as Step 1 above,
causing the scheduler to do the same queuing as in Step 2. However, in Step
3, q sees the handover flag but also that it is expanded, meaning this is a push
handover. Note, however, that a push handover is symmetric to a pull handover
with the exception of which particle initiates; i.e., p performing a push handover
with q yields the same result as q performing a pull handover with p. So, on
seeing this is a push handover, q simply proceeds as particle p starting in Step
1, effectively exchanging roles with p.

The configuration of a particle p is C(p) = (v, o, q, t, e, (f0, . . . , f9)), where
v ∈ V is the coordinates of its head node, o ∈ O is its orientation, q ∈ Q
is its state, t ∈ T is its tail port, e ∈ E is its expansion direction, and each
fi ∈ Σ is the flag on its i-th port, for i ∈ {0, 1, . . . , 9}. Note that although
the configuration of a particle p includes all information needed to reconstruct
p, particle p itself does not have access to any global information or unique
identifiers; in particular, it has no knowledge of v or o. The configuration of
a particle system P is C∗(P ) = {C(p) : p ∈ P}, the set of all configurations
of particles in P . A system configuration is valid if no two particles in the
system occupy a common node in G∆. We define C(P ) to be the set of all
valid system configurations of P . An amoebot system is defined as a 5-tuple
A = (Q,Σ, δ, P, σ), where Q is a constant-size set of particle states, Σ is a
constant-size alphabet of flags, δ is the transition function, P is the particle
system, and σ ∈ C(P ) is the initial system configuration of A mapping each
particle to its starting configuration.

For system configurations α, α′ ∈ C(P ), where α 6= α′, we say α yields α′

(denoted α→A α′) if α can become α′ after a single particle activation. We use
α →A∗ α′ if α yields α′ in 0 or more activations. A sequence of configurations
(α0, α1, . . . , αk) is a valid transition sequence if for every i ∈ [k] we have αi ∈
C(P ), αi 6= αi+1, and αi →A αi+1. A configuration α ∈ C(P ) is called reachable
if there exists a valid transition sequence beginning at the initial configuration
σ and ending at α. A configuration α ∈ C(P ) is called terminal if there is no
configuration α′ ∈ C(P ) such that α →A α′. A set of configurations Γ ⊆ C(P )
is called terminal if for all α ∈ Γ there is no configuration α′ 6∈ Γ such that
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α→A α′ (i.e., no configuration in Γ can transition to any configuration outside
of Γ ). An amoebot system A = (Q,Σ, δ, P, σ) is called directed if every transition
sequence from σ leads to the same terminal configuration, or directed to set Γ
if every transition sequence from σ leads to a configuration in Γ . Finally, given
a shape S (i.e., a connected set of nodes in G∆), we say that system A forms
shape S if and only if, for some set of configurations Γ ⊆ C(P ), A is directed
to Γ and for every α ∈ Γ , the locations of the particles in α are exactly the
locations of S (up to translation and rotation).

4 Simulating Amoebot Systems with Tile Automata

In this section, we present our main result, which is a construction that takes
as input an amoebot system and which outputs a Tile Automata system that
simulates it. However, we must first define what we mean by the term “simulate”
in this context.

4.1 Defining simulation

Fig. 4: A portion of the tessella-
tion by the macrotile shape of our
construction (shown in Figures 6
and 5) with an overlay of G∆.

Intuitively, our simulation of an amoebot
system by a Tile Automata system will con-
sist of groups of tiles, called macrotiles,
which each represent a single amoebot par-
ticle. Starting from an assembly which maps
(via a mapping function to be described)
to the initial configuration of an amoebot
system, singleton tiles as well as macrotiles
will attach, detach, and change states. Any
changes to the assembly, modulo a scale fac-
tor, will map to new, valid configurations
of the amoebot system. Conversely, for any
valid configuration change of the amoebot
system, the assembly will be able to change
in such a way that it represents the new
amoebot configuration, under the mapping
function.

A macrotile is a connected, finite region
of the plane Z2, whose shape can be any polyomino composed of connected
unit squares. For a macrotile shape M to be valid to use for a simulation, it
must tessellate. Since we are defining simulation of amoebot systems, which are
embedded in the triangular grid, by Tile Automata, which are embedded in the
square grid, a further condition is required for macrotile shapes. Let T(M) be a
tessellation of the plane by macrotiles of shape M . Let G be the graph formed
where every node is a macrotile in T(M) and there is an edge between a pair
of nodes if and only if they are adjacent to each other in T(M). Then, graph G
must be isomorphic to the triangular grid graph (i.e. the graph of the triangular
grid where each intersection is a node). This means each macrotile has the same
6-neighbor neighborhood as nodes in the triangular grid graph (see Figure 4).
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Let v be the coordinates of a node inG∆, and letmv be the macrotile location
which corresponds to it. Given Tile Automata system Γ and its set of producible
assemblies PRODΓ , for assembly A ∈ PRODΓ , let α ∈ A be a positioned assembly
of A, and let α|mv be the (possibly empty) subassembly of α contained in the
locations of mv. Given Γ and an amoebot system A = (Q,Σ, δ, P, σ), a macrotile
representation function R, from Γ to A, is a function which takes as input the
portion of an assembly contained within a single macrotile locations, and which
returns either information about the configuration of an amoebot particle from
P , or ε (which maps to empty space). That is, given some α|mv, R(α|mv) ∈
{(t, e, o, q, (f0, f1, ..., f9)) | t ∈ T , o ∈ O, q ∈ Q, e ∈ E, and fi ∈ Σ} ∪ {ε}, where
t ∈ T is the relative direction of a particle’s tail from its head, o ∈ O is its
orientation offset, q ∈ Q is its state, and each fi ∈ Σ, for 0 ≤ i < 9, is the flag
in its ith port. An assembly representation function, or simply representation
function, R∗ from Γ to A takes as input an entire positioned assembly of Γ
and applies R to every macrotile location and returns a corresponding amoebot
system configuration from C(P ).

For a positioned assembly α ∈ PRODΓ such that R∗(α) = α′ ∈ C(P ), α
is said to map cleanly to α′ under R∗ if for all non empty blocks α|mv ∈
dom α, v ∈ dom α′ or v′ ∈ dom α′ for some v′ = v + u where u ∈
{(1, 0), (0, 1), (−1, 0), (0,−1), (−1, 1), (1,−1)}. In other words, α may have tiles
in a macrotile location representing a particle in α′, or empty space in α′ but
only if that position is adjacent to a particle in α′. We call such growth “around
the edges” of α fuzz and thus restrict it to be adjacent to macrotiles representing
particles.

Note that the following definitions of follows, models, and simulates, as well as
the previous definitions of macrotiles, fuzz, etc. are based upon similar definitions
used to prove results about simulation and intrinsic universality in [7,11,17,18]
and several other papers.

Definition 1 (A follows Γ ). Given Tile Automata system Γ , amoebot system
A, and assembly representation function R∗ from Γ to A, we say that A follows
Γ (under R), and we write A aR Γ , if α →Γ β, for α, β ∈ PRODΓ , implies that
R∗(α)→A∗ R∗(β).

Definition 2 (Γ models A).
Given Tile Automata system Γ , amoebot system A = (Q,Σ, δ, P, σ), and

assembly representation function R∗ from Γ to A, we say that Γ models A
(under R), and we write Γ |=R A, if for every α ∈ C(P ), there exists Ψ ⊂ PRODΓ
where R∗(α′) = α for all α′ ∈ Ψ , such that, for every β ∈ C(P ) where α→A β,
(1) for every α′ ∈ Ψ there exists β′ ∈ PRODΓ where R∗(β′) = β and α′ →Γ β′,
and (2) for every α′′ ∈ PRODΓ where α′′ →Γ β′, β′ ∈ PRODΓ , R∗(α′′) = α, and
R∗(β′) = β, there exists α′ ∈ Ψ such that α′ →Γ α′′.

Definition 2 essentially specifies that every time Γ simulates an amoebot
configuration α ∈ C(P ), there must be at least one valid growth path in Γ for
each of the possible next configurations that α could transition into from α,
which results in an assembly in Γ that maps to that next step.
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Definition 3 (Γ simulates A). Given Tile Automata system Γ , amoebot sys-
tem A, and assembly representation function R∗ from Γ to A, if A aR Γ and
Γ |=R A, we say that Γ simulates A under R.

With the definition of what it means for a Tile Automata system to simulate
an amoebot system, we can now state our main result.

Theorem 1. Let A be an arbitrary amoebot system. There exists a Tile Au-
tomata system Γ and assembly representation function R∗ from Γ to A such
that Γ simulates A under R. Furthermore, the simulation is at scale factor 100.

To prove Theorem 1, we let A = (Q,ΣA, δ, P, σ) be an arbitrary amoe-
bot system. We will now show how to construct a Tile Automata system
Γ = (ΣΓ , Λ,Π,∆, τ) such that Γ simulates A at scale factor 100. The rest
of this section contains details of our construction.

4.2 Construction definitions

Neighborhood - In the geometric amoebots model, particles are aware of the
occupation of all locations on the lattice adjacent to their own. The neighborhood
of a given location on the lattice is the set of its six neighbors. Pertaining to a
particle, we say that a particle’s neighborhood is the set all particles occupying
adjacent locations on the lattice, defined by N(p), where p is a particle. Note
that |N(p)| ≤ 6 if p is contracted and 10 if it is expanded.

Macrotile - A τ -stable assembly of TA tiles g such that the macrotile repre-
sentation function R maps g to a valid particle inA. This simulation makes use of
macrotiles with an approximately hexagonal shape and special tiles within each
macrotile used to calculate information about its movement and neighborhood.
See Figure 5 for an overview.

Clock Tiles - The tiles at the middle of every particle macrotile used to keep
track of state, flags, T value, and neighborhood information. The middle clock
tile is responsible for maintaining the particle’s state q ∈ Q, and the surrounding
clock tiles (called subordinate clock tiles) combine information from the particle
edges and neighbors to pass into the central clock tile.

Wire Tiles - Rows of tiles leading from the bank of clock tiles in the middle
of every macrotile to each edge, purposed with transmitting information from
the clock to the neighboring tiles and available edges.

Filler Tiles - Tiles that serve no function within a macrotile other than to
maintain connectivity with other components and shape the macrotile.

Flag Tiles - Exposed wire ends on each side of the tile responsible for
maintaining flag states from Σ in A, as well as reading flags from their respective
neighbors. Neighboring flags are retrieved via wire transmission.

Timing Tiles - Individual tiles in Γ that diffuse into specific slots in the
particle macrotiles that “start” that particle’s turn, and disconnect after the
turn is finished. Timing tiles are inert except for connecting to a central clock
tile, and serve as the “asynchronous clock” for our simulation.
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ε Tiles - Individual tiles in Γ that attach to the available flag tiles of
macrotiles with non-full neighborhoods who are querying or attempting to lock
their neighborhood flags. ε tiles can only attach to the exposed end of a wire dis-
playing a lock or query signal flag. After attaching, they serve only to undergo
a single state transition, which indicates to the wire end that there exists no
neighbor there. After this transition, the wire propagates this information back
to its clock bank and the ε tile detaches.

Floating Macrotile - These macrotiles (“floats”), will represent (portions
of) particles in A but are not connected to the swarm. They attach to valid sites
along the perimeter and simulate the “head” of an expanding particle.

Configuration Tile - After macrotiles complete their turn, they com-
bine all values of their configuration of which they are aware (q ∈ Q, e ∈
E, (f0, f1, ..., f9 ∈ Σ10), t ∈ T ) into a single tile proximal to the clock bank
called the Configuration Tile. When a macrotile is engaging in an expansion or
handover move, the configuration tile is used by the representation function R
to map the active macrotile to its previous configuration, until the transition
completes. An active macrotile engaged in these moves will be mapped by its
configuration tile until it’s no longer displaying a flag indicating it is engaged in
either an expansion or handover on any of its wires, ensuring the simulation of
an atomic move. For a more complete explanation, see appendix B, simulation
details.

4.3 Simulation Overview

Fig. 5: Blue tiles are subordinate
clock tiles, dark blue is the central
clock tile, green tiles wires, and
grey tiles filler. The empty loca-
tion immediately east of the cen-
tral clock tile is where the timing
tile attaches to signal the central
clock tile to begin the turn. Flags
are displayed on the the outer-
most tile of every wire.

The simulation of A by Γ is affected with
the assistance of the hexagonal macrotiles
and the signals implemented via TA state
transitions. In [4], since there were only four
directions from which signals could come, it
was sufficient for each macrotile to have one
clock tile, which would transition its own
state based on signals received from wires
and send its state down the wires. Since the
geometric amoebots model exists on the G∆,
signals can come from up to six directions,
necessitating the use of multiple clock tiles.
Figure 5 contains a high-level depiction of a
macrotile in Γ that simulates a particle of A.

Figure 6 illustrates a simple example
of simulated particle movement. Macrotiles
must be initially arranged into a configura-
tion α that under R∗(α) maps to a valid configuration α′ ∈ C(P ), with connected
edges representing adjacency in α′. Macrotiles start with their respective states,
flags, and t values set to whatever those states are for the corresponding parti-
cle in α′. Swarm macrotiles may then begin to accept timing tiles, starting their
turns. We use neighborhood lock signals to ensure that no particles that are in the



Simulating Programmable Matter with Self-Assembly 13

same neighborhood attempt to move at the same time, avoiding asynchronous
conflicts. Expansion is facilitated by the attachment along perimeter sites of
floating macrotiles. The authors additionally considered systems where moves
progressed by growing a new macrotile wherever a particle wanted to expand,
but this construction technique requires a longer wait between neighborhood
locks and unlocks. In the interest of minimizing the overhead that simulation
requires, we wanted to minimize the amount of time that a neighborhood had
to be locked in order to encourage collaborative movement, and decided to use
prefabricated floating macrotiles.

Once a particle macrotile has received a timing tile, it only continues its
turn if it is not already locked by a neighbor. If the particle is not locked down,
then the active macrotile sends signals to all of its neighbors to lock down its
neighborhood and it can continue without fear of causing conflict. Should two
lock signals be traveling towards each other along a shared wire between two
macrotiles, whichever signal is first carried into the other macrotile’s wires via
state transitions overwrites the signal originating from the slower macrotile, and
the faster propagating signal’s originator locks down the slower. The neighboring
flags are needed to simulate the transition function, and are sent from neighbors
to the active macrotile via wire transmission. Once the active macrotile has de-
cided its new state, flags, and move, it updates this information and attempts
to execute its chosen move. If the move is a simple expansion, it marks the site
where it wants to expand with a valid attachment signal and keeps the neigh-
borhood locked until a floating macrotile connects to it, representing the “head”
of the expanding particle. If the particle chooses to contract, it sends signals to
the tail to detach from the swarm, whereupon it will become another float, and
then unlocks its neighborhood. If the particle chose a handoveri, it performs some
additional checks to ensure viability and then sends signals either “taking over”
one of a neighboring expanded particle’s macrotiles, or ceding control of one of
its macrotiles to a neighboring tile. In the case of handoveri, an additional state
and flags for the subordinate particle are returned from the transition function,
to be propagated from the active macrotile to the subordinate macrotile via wire
transmissions as control of the macrotile changes hands.

5 Simulation of Movement

Before the simulation begins, given A with initial configuration σ, we pro-
duce Λ for Γ which consists of a connected configuration of macrotiles, each
macrotile mapping to a corresponding particle in σ under R. To capture the
asynchronous nature of amoebot particle activations, we utilize timing tile dif-
fusion into macrotiles to “activate” them for their turns. After attachment, the
tile sends a signal to the central clock to start its turn. After a given macrotile
has started its turn and has successfully locked its neighborhood, it gathers all
information necessary for its transition function via wire-propagated signals (de-
tailed in the technical appendix). To ensure that the transition function affected
by macrotiles is isomorphic to the transition function affected by A, we combine
all of the flags, e and t values (resulting in a |Σ10| ∗ |t| ∗ |e| increase in state
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Fig. 6: Particle B simulates movement by allowing a float to attach to a free edge,
then detaching the original macrotile representing particle B over the course of
two activations.

complexity for clock tiles) into the tile to the left of the central clock tile. Once
this value is at that tile, the central clock tile, which holds the state, undergoes
a state transition defined in the construction of ∆.

Once the new state, flags, and move are produced, the particle propagates its
flags down their respective wires and in the case that handoveri is returned for
the value of m, the particle additionally sends a signal (detailed in the technical
appendix) to its ith neighbor to ensure that the neighbor has the proper orien-
tation to facilitate that move. For expandi, the active macrotile sends a signal
down the wire in the ith direction that allows a float to attach to that edge.
After connection of a float, the active macrotile further sends a CopySignal
to the newly attached float so the new float can copy the states and relevant
flags of the expanding macrotile and fully become the head. The float sends an
AcknowledgementSignal after it is displaying the proper state and flags, which
tells the newly expanded macrotile that it’s safe to unlock its neighborhood. For
contracti, the expanded macrotile sends a Detach signal to the macrotile that
contains the ith port. After detachment, the recently contracted macrotile un-
locks its neighborhood. For idle, states and flags may be updated, but no change
to the orientation of the simulated particles occurs. Once a macrotile executing
an idle move changes its state and sends the new flags to its flag tiles, it unlocks
its neighborhood and ends its turn.

5.1 handover

The Amoebots model defines a move called the handoveri, which allows two
neighboring particles, one expanded and one contracted, to simultaneously con-
tract from and expand into the same grid location. This move can be initiated by
either particle, and involves the initiating particle’s neighbor in the ith direction.
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Fig. 7: A handoverPulli movement executed by particle A. The overall orienta-
tion of the swarm does not change, but TailA changes hands and becomes the
head of B, the subordinate particle in this exchange.

There are four possibilities for handover contracts: A contracted particle can ex-
pand into a spot previously occupied by a head, a contracted particle can expand
into a spot previously occupied by a tail, an expanded particle can contract and
“force” its neighbor into expanding into wherever its head is currently located,
and an expanded particle can contract and “force” its neighbor into expanding
into wherever its tail is currently located. It’s necessary that both moves happen
simultaneously to enable certain actions such as moving a collection of particles
through a static tunnel of width one. For any handoverPull movement, the ini-
tiating particle must be expanded and the subordinate particle contracted, while
for any handoverPush movement, the reverse is true.

All moves involve locking down the active particle’s neighborhood. Since
handoveri necessarily changes the orientation of both the initiating and sub-
ordinate particles, it is necessary to lock down the respective neighbor-
hoods of all particles involved. Thus, the handoverPulli movement requires a
ProgressiveLockdownSignali to be sent to the subordinate particle(s) to be fur-
ther propagated to their respective neighborhoods. Note, that for the duration
of the execution of a handover move, a handoveri flag will be displayed, ensuring
that the macrotile maps to its previous configuration under the representation
function R until the handoveri or expandi flags are cleared from the macrotiles’
respective ports. This ensures that we have smooth transitions for macrotiles
mapping to the atomic transitions of amoebots.

Handover moves in our simulation occur after the initiating particle has
locked down its own neighborhood, checked to ensure move validity with the
handoveri signal, and further sent a ProgressiveLockdownSignali to each sub-
ordinate particle. The initiating particle ensures that the configuration of expan-
sions and contractions are appropriate for the move it is attempting, and then
sends a signal to the macrotile that will be passed from one particle to another.
This signal contains the new state and flags for the subordinate macrotile(s).
Once these fields are updated, and the handoveri flags are cleared from the
macrotiles’ wires, the macrotile that changed state is considered to be the head
of the newly expanded particle, which sends an acknowledgement signal back to
the initiating macrotile. Macrotiles engaged in a handoveri move are mapped by
R via their configuration tiles until they clear the flags, after which they revert
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to the normal mode of operation for R, which checks a macrotile’s central clock
tile and the subordinate clock tile to the immediate west. After receiving the
acknowledgement of successful transition, the initiating macrotile sends out un-
lock signals to its neighborhood (which necessarily propagate from subordinate
particles to their respective neighborhoods as well), and finally the initiating
macrotile detaches its timing tile, ending the turn.

5.2 Attachment Sites

To avoid potential conflicts between tiles undergoing their state transitions and
the floating macrotiles, we only allow the floating macrotiles to attach to valid
attachment sites along the perimeter of the swarm. The perimeter of the swarm
shares no affinity with the float tiles by default. Only after a perimeter particle
undergoes its transition function and returns M = expandi and marks that edge
with a state that has affinity with the float can any float attach to the particle
that wants to expand. Floats attach to the swarm via a τ -strength attachment
along the exposed wire end of the perimeter particle that is attempting to ex-
pand. The only time macrotiles can detach from the swarm is when a given
expanded macrotile receives a Detach signal from its other end. When this oc-
curs, the detaching macrotile sends signals from its clock bank to all edges to
have them change their exposed wire ends to a state with no affinity to the
swarm. Once the macrotile is no longer part of the swarm, it sends query sig-
nals to all of its edges. In the case that a macrotile receives six ε responses
from its wires (that is, it has no neighbors) after a query signal, it undergoes
states transitions in the clock and wires that make it a float. The newly con-
tracted macrotile prevents unintentional reattachments of other floats because
the Detach signal, after leaving the contracted particle’s wire, leaves the wire in
its respective flag state with no affinity with floats. The wire that corresponds
to the detached macrotile will not allow attachments again until it receives an
Attach signal from the central clock bank again.

6 Conclusion

We have presented a simulation construction in which an amoebots system can
be simulated by a collection of Tile Automata macrotiles. The mechanisms by
which particle movement is simulated were discussed as well, such as how the
atomic actions of the amoebots model were replicated within the simulation
without threat of interruption via state transitions. We hope this fits into a larger
schema of comparing the power of various computational models by simulation.
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Technical Appendix

A The Tile Automata Model

A.1 States, tiles, and assemblies

Tiles and States Let Σ be an alphabet of state types. A tile t is a unit square
centered at a point of the discrete plane, denoted by L(t) ∈ Z2. Each tile is
assigned a state, S(t) ∈ Σ. Two tiles t1 and t2 are said to have the same tile
type if S(t1) = S(t2).

Affinity Function Let D = {⊥,`}, where ⊥ and ` represent above-below
and side-by-side orientations of a pair of tiles, respectively. An affinity function
Π : Σ2 × D → N, where the output is the affinity strength between tiles with
the input pair of states and the relative positions specified by the given direction
d ∈ D.

Transition Rules Transition rules allow the states of tiles to change based
on their neighbors. A transition rule is a 5-tuple (Sia, S2a, S1b, S2b, d), with each
Sia, S2a, S1b, S2b ∈ Σ and d ∈ D, that specifies that if two tiles are in states S1a

and S2a and adjacent to each other in orientation d, then they can transition
into states S2a and S2b, respectively. A transition rule is considered to be a
single-transition rule if either S1a = S1b or S2a = S2b, and a double-transition
rule otherwise.

Assemblies A positioned shape is any connected subset of Z2. A positioned
assembly is a set of tiles at unique coordinates in Z2, which can be represented as
a mapping from locations to tile states (or empty locations), α : Z2 → Σ ∪ {ε}.
The positioned shape of a positioned assembly α is the set of coordinates of its
tiles, denoted as SHAPEα. For a positioned assembly α, let α(x, y) denote the
state of the tile with location (x, y) ∈ Z2 in α.

For a given positioned assembly α and affinity function Π, define the bond
graph Gα to be the weighted grid graph in which:

1. each tile of α is a vertex
2. no edge exists between non-adjacent tiles
3. the weight of an edge between adjacent tiles t1 and t2 with locations (x1, y1)

and (x2, y2), respectively, is:
(a) Π(S(t1), S(t2),⊥) if y1 > y2
(b) Π(S(t2), S(t1),⊥) if y1 < y2
(c) Π(S(t1), S(t2),`) if x1 < x2
(d) Π(S(t2), S(t1),`) if x1 > x2

A positioned assembly α is said to be τ -stable for positive integer τ provided
the bond graph Gα has min-cut at least τ .

For a positioned assembly α and integer vector v = (v1, v2), let αv denote
the positioned assembly obtained by translating each tile in α by v. An assembly
is a set of all translations αv of a positioned assembly α. A shape is the set of
all integer translations for some subset of Z2, and the shape of an assembly A is
defined to be the set of positioned shapes of all positioned assemblies in A. The
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size of either an assembly or shape X, denoted as |X|, refers to the number of
tiles in any positioned assembly of X.

Breakable Assemblies An assembly is τ -breakable if it can be split into
two assemblies along a cut whose total affinity strength sums to less than τ .
Formally, an assembly C is breakable into assemblies A and B if the bond graph
GC for some positioned assembly γ ∈ C has a cut (α, β) for positioned assemblies
α ∈ A and β ∈ B of affinity strength less than τ . We call assemblies A and B
pieces of the breakable assembly C.

Combinable Assemblies Two assemblies are τ -combinable provided they
may attach along a border whose strength sums to at least τ . Formally, two
assemblies A and B are τ -combinable into an assembly C provided that Gγ for
any γ ∈ C has a cut (α, β) of strength at least τ for some positioned assemblies
α ∈ A and β ∈ B. We call C a combination of A and B.

Transitionable Assemblies Let ∆ be a set of transition rules. An assembly
A is transitionable, with respect to ∆, into assembly B if and only if there exist
α ∈ A and β ∈ B such that for some pair of adjacent tiles ti, tj ∈ α:

1. ∃ a pair of adjacent tiles th, tk ∈ β with L(ti) = L(th) and L(tj) = L(tk)
2. ∃ a transition rule δ in ∆ such that δ = (S(ti), S(tj), S(th), S(tk),⊥) or
δ = (S(ti), S(tj), S(th), S(tk),`)

3. A− {ti, tj} = B − {th, tk}

A.2 Tile Automata (TA) model

A tile automata system is a 5-tuple (Σ,Π,Λ,∆, τ) where Σ is an alphabet of
state types, Π is an affinity function, Λ is a set of initial assemblies with each tile
assigned a state from Σ, ∆ is a set of transition rules for states in Σ, and τ ∈ N
is the stability threshold. When the affinity function and state types are implied,
we let (Λ,∆, τ) denote a tile automata system. An example tile automata system
can be seen in Figure 1.

Definition 4 (Tile Automata Producibility). For a given tile automata sys-
tem Γ = (Σ,Λ,Π,∆, τ), the set of producible assemblies of Γ , denoted PRODΓ ,
is defined recursively:

1. (Base) Λ ⊆ PRODΓ
2. (Recursion) Any of the following:

(a) (Combinations) For any A,B ∈ PRODΓ such that A and B are τ -
combinable into C, then C ∈ PRODΓ

(b) (Breaks) For any C ∈ PRODΓ such that C is τ -breakable into A and B,
then A,B ∈ PRODΓ

(c) (Transitions) For any A ∈ PRODΓ such that A is transitionable into B
(with respect to ∆), then B ∈ PRODΓ

For a tile automata system Γ = (Σ,Λ,Π,∆, τ), we say A→Γ
1 B for assemblies

A and B if A is τ -combinable with some producible assembly to form B, if
A is transitionable into B (with respect to ∆), if A is τ -breakable into B and
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some other assembly, or it A = B. Intuitively, this means that A may grow into
assembly B through one or fewer combinations, transitions, or breaks. We define
the relation →Γ to be the transitive closure of →Γ

1 , i.e. A →Γ B means that A
may grow into B through a sequence of combinations, transitions, and/or breaks.

Definition 5 (Terminal Assemblies). A producible assembly A of tile au-
tomata system Γ = (Σ,Λ,Π,∆, τ) is terminal provided that A is not τ -
combinable with any producible assembly of Γ , A is not τ -breakable, and A is
not transitionable (with respect to ∆) to any producible assembly of Γ . We use
TERMΓ ⊆ PRODΓ denote the set of producible assemblies of Γ which are terminal.

B Simulation Details

In this section, we give more technical details of how Γ = (ΣΓ , Λ,Π,∆, τ) is
constructed to simulate A = (Q,ΣA, δ, P, σ).

State Complexity: In A, particles are allowed to know their states and the
respective flags of all of their neighbors. Wires are responsible for transmitting
signals necessary to coordinate turns between macrotiles. In addition, they must
be able to simultaneously transmit signals from their respective clock tiles to
neighboring macrotiles, as well as pass any flags or states needed from their re-
spective neighbor to their respective clock tiles. The mechanism with the greatest
state complexity(maximal combination of states and flags in A) utilized by tiles
takes place during the state transition period of a macrotile’s turn, which com-
bines the macrotile’s flags, e value, t value, and state. Should this transition
return m = handoveri, it is similarly responsible for its own flags and the flags
of subordinate particle(s). In that case, the results of the state transition in Γ
that simulates the transition function δ in A need to account for up to sixteen
flags, two states, one e value, and two t values. The maximal complexity uti-
lized during this procedure occurs within the handoverPushi signal (detailed
in B.2), which requires all sixteen flags for all three particles, two states, and
two t values to be fully formed, resulting in a maximal tile state complexity of
(Σ10 ×Q2 × e × t + 1). The constant 1 in the previous expression refers to the
ε symbol which is necessarily the t value of the newly contracted subordinate
particle.

Macrotile Mapping: Each particle p in A has a unique configuration C(p) =
(v, t, e, o, q, (f0, f1, ..., f9)) that we must be able to represent with our macrotiles.
For particle p, there exists in Γ a macrotile with state q in its central clock
tile, flags (f0, f1, ...f9) are represented by the tiles on the extreme ends of the
wires extending from the clock bank to each edge, with the value of f0 being
represented o faces in the clockwise direction from the northern edge. (A brief
note: In our simulation, we define the default orientation o = 0 to start labeling
pointing north because the grid (G∆) on which our macrotiles connect to one
another is rotated 30◦ from the default orientation of the (G∆) in the geometric
Amoebots model. This results in two changes to the neighborhood of a particle
on our graph. On our graph, a particle has neighbors in the following directions:
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(N, NE, SE, S, SW, NW). Tiles on the geometric Amoebots grid have neighbors
(E, SE, SW, W, NW, NE), resulting in a replacement of the (E,W) connections
with (N,S) in our simulation. Because we couldn’t set the default orientation
to o = 0 = E, we chose another direction in the set of local connections, N.)
If the t value of p 6= ε, the macrotile corresponding to p is expanded, and has
a macrotile in direction t representing its tail. This tail macrotile has the same
state q in its central clock tile, and displays on its wire ends whichever subset of
five flags corresponds to its relative location.

Initial Assemblies and Representation Functions: Our simulation works as
follows with regards to initial assemblies: for every particle p ∈ P , there exists
a macrotile in Γ that represents p under R. This section will show that initial
configurations for both systems are isomorphic with respect to R∗ and the Sim-
ulating Dynamics section ahead will show that A follows Γ and that Γ models
A.

For initial configuration σ of A, we define the initial configuration Λ of Γ to
consist of one large macrotile, itself a connected collection of particle macrotiles,
representing σ under R∗, a number of float tiles equal to at least half of the
number of macrotiles in the connected configuration, a number of singleton ε tiles
equal to (6×|P|), used to represent empty space in response to query signals, and
finally an infinite amount of singleton timing tiles to allow for particle activations.
Additional floats above half of the number of positioned particles are fine, more
floats simply serve only to relatively speed up perimeter expansion. For every
particle p ∈ σ, there exists some macrotile in the initial macrotile configuration
of Γ which maps to an identical configuration (q ∈ Q, (f0, f1, ..., f9 ∈ Σ), e ∈
E, t ∈ T, o ∈ O) (i.e. it has an identical location and neighborhood, and its state,
set of flags, etc. are the same when mapped under R).

The macrotile representation function R is defined so that it operates as fol-
lows. Given a macrotile p, it first checks for the existence of a flag indicating
that p is engaged in either a handover or expand move. This is determined by
checking the states p’s clock and wire tiles. If it is not, R(p) determines the state
q from the macrotile mapping to p’s central clock tile, values t and e from a sub-
ordinate clock tile proximal to the central clock tile, and the flags (f0, f1, ..., f9)
from the subordinate clock tile. In the case that particle p is engaged in either
a handover or expand move, R instead reads all configuration information from
the configuration tile, to the west of the clock bank, which holds the particle’s
previous configuration. This is utilized so that a particle attempting to execute
one of these moves will cleanly map to α for the duration of the move, and after
the move is completed and the flag removed, will immediately and cleanly map
to β, thus representing it as an atomic move.

Macrotile Turn: The simulation of A by Γ is scaled in both space (by a factor
of 100 - the macrotile size) and time. What this means is that, for each atomic
asynchronous round of A, which consists of one particle executing a turn (and
in the case of it initiating a handover contract, a series of 4 or 5 turns between
it and the subordinate particle depending on whether it is a push or pull), one
or two macrotiles of Γ go through a series of tile state transitions, additions,
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and detachments which in total can be considered one atomic operation and
represent the round of A.

A turn is the set of operations a macrotile undergoes in order to simulate
a turn for an amoebot particle. In order to capture the asynchronous nature of
particle activations within A, we use timing tiles to begin a macrotile’s turn.
Timing tiles float around the simulation and can only interact with an inactive
macrotile via a hole in its subordinate clock bank waiting for a timing tile.
Upon connection, a timing tile changes the state of the central clock tile from
(q ∈ Q)× inactive to the same (q ∈ Q)×active. This state tells the central clock
tile to send out lock signals to all of its neighbors in an attempt to begin its
move. Should it receive no indication that another particle in its neighborhood
is attempting to move, the particle begins to collect the flags of its neighbors
indexed to the active particle. In the other case, there must be a neighboring
particle attempting to lock down its neighborhood. This will be indicated when
the two competing lock signals collide along a wire, either both in one of the
tiles’ wire, or both will meet on their respective ends of exposed wires from
both macrotiles. The resolution of this collision is determined by where the
collision takes place. Given macrotiles α and β, both trying to lock down their
neighborhoods with a lock signal somewhere along their shared wire, we will
examine possible cases of signal collision. Once a lock signal reaches the end of
the wire from which it originated, it is up to the neighboring clock tile to transmit
that signal via wire transmission to the neighboring clock tiles. If lockα were to
meet lockβ , both along α’s wire, then the lockβ signal would overwrite the lockα
signal, which would “bounce” off of the collision and return the central clock
tile, returning a negative for α′s lock attempt. The inverse would be true should
the signals meet while both are in β′s wire. If both signals meet while both are
at the extremis of the wire from which they originated, then both are susceptible
to a state transition that would overwrite their own respective signal and allow
the neighbor to proceed with their lock. If α′s lock attempt is overwritten by
β′s lock signal, then upon receipt of β′s signal, α will send signals the rest of its
edges (and by wire transmission, its neighbors) to cancel its own lock order.

Assuming macrotile α may safely continue its turn, it begins to collect the
flags indexed to it by its neighbors via query signals sent to its edges. The
purpose of these signals is to copy the flag exposed by each of α’s neighbors
on the exposed wire ends of their shared edges. If α has any empty positions
in its neighborhood, the query signals sent down the wires corresponding to
these unoccupied locations activate an affinity with the previously mentioned ε
tiles, which bind to the exposed wire ends, undergo transitions to indicate that
there exists no neighbor at that location, and the signal bounces back from the
wire end to the clock. The ε tile changes to a state with no affinity to swarm
macrotiles after undergoing its state transition, and so detaches after signalling to
the wire end that that location is unoccupied. These signals flow from each wire
end back to the clock, where they are successively combined into the subordinate
flags/t value signal that represents one half of the tiles that affect the macrotile’s
simulated amoebot state transition. Once all of this information is combined into
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a single subordinate clock tile, it undergoes a state transition with the central
clock tile, defined in ∆, to produce the new state, flags, and move for the active
macrotile.

If m = idle, the macrotile updates its state and flags and then unlocks
its neighborhood. After that, it changes its state from (q ∈ Q) × active to
the same (q ∈ Q) × inactive, and detaches its timing tile, ending the turn.
If m = Expandi, the active macrotile sends a signal to its ith edge to allow
strength = τ binding along the exposed wire ends with a float. Only after a float
attaches and copies the flags, state, and t value for its new tail does the active
tile send out an unlock signal to its neighborhood and ends the turn. Should
m = Contracti, assuming the macrotile is expanded in the ith direction, it
sends a detachment signal to whichever of its ends is detaching and then unlocks
its neighborhood after receiving an acknowledgement. Handover contracts are
handled in detail in section 5.1, but suffice to say they similarly undergo the lock
and check procedures, and similarly exchange information between initiating and
subordinate macrotiles before unlocking the affected neighborhood and ending
the turn. For greater detail on the signals used in this section, refer to Section B.2

Simulating Dynamics: A turn of A is simulated in Γ via a series of operations
which are officially begun once a particle has succeeded in locking its neighbor-
hood. If it receives a timing tile but fails to lock its neighborhood, this does
not map to a turn and is the same as if no timing tile had been received (it is
an aborted turn). However, at the moment at which it first has officially locked
its neighborhood, the series of operations (transitions, tile attachments, and tile
detachments) that occur before it unlocks its neighborhood, will map to a single
turn in A.

Consider configurations A′, B′ of A such that A′, B′ ∈ C(P ) and A′ →A∗
B′. Any TA system assembly A ∈ PRODΓ such that under the representation
function, R∗(A) = A′, must contain a macrotile that maps to each particle in
A′. Suppose A′ →A B′. This means that a single atomic move m ∈ M from an
amoebot is sufficient to change configuration A′ to B′. Since Γ must model A, it
must be the case that there is a pathway for A to transition via the simulation
of a turn into B ∈ PRODΓ such that R∗(B) = B′. We will inspect the transitions
possible in A′ and show how they are modeled in Γ , so assume A′ represents a
configuration in between turns and A is an assembly with no macrotiles that are
in the middle of a turn (the base case is the initial configuration). Now, let some
particle p be selected for the next turn in A′. Since R∗(A) = A′, we know that
whichever macrotile maps to p must represent its configuration, and it also must
be able to receive a timing tile. Since no other particle is in the midst of a turn, it
will be able to lock its neighborhood and begin simulation of the turn, which will
then proceed following the protocol previously described. Interior particles, that
is, particles with no exposed edges can only choose m = idle|handoveri|contracti,
assuming the particle has an expanded neighbor or is itself expanded in the ith
direction. Any macrotile that maps to an interior particle under R is similarly
only capable of these moves, since they have no exposed edges to which they
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could allow floats to attach. Contracti is only allowed in the case that the particle
is expanded.

Any perimeter particle, with exposed wire edges, is capable of any move
m ∈ M , assuming the particle’s configuration allows for it. This is reflected
in the A, where perimeter macrotiles are allowed to expand by creating a valid
attachment site in the desired direction by changing their exposed wire end in the
ith direction to a state that has affinity with floats. This, in addition to the moves
already available to the interior particles, ensures that any atomic action affected
by configuration A′ can be represented by a corresponding move in A, and the
protocol previously described ensures that it can correctly complete, updating
all necessary configuration information, before unlocking its neighborhood and
thus ending its simulation of the turn. In this way, Γ models A, scaled in space
and time, using series of operations that are forced to be atomic are represent
all possible atomic moves of A.

To see that A follows Γ , we refer to the previously described protocol to show
that for any α, β ∈ PRODΓ where α →Γ β, then R∗(α) →A∗ R∗(β) and, for idle
and contract moves, until the simulation of the turn completes, R∗(α) = R∗(β).
For cases where R∗(α) →A R∗(β) via an expansion or handover move, we
will explain the steps taken to ensure a clean change from R∗(α) = R∗(β) to
R∗(α) 6= R∗(β). Section 4.2 defines the configuration tile, a tile that is updated
with a macrotile’s configuration information every turn after a successful move.
This tile provides configuration information to the representation function in-
stead of the normal central clock tile and subordinate clock tile that contain a
particle’s configuration in the case that the active macrotile is engaged in either
an expansion or handoveri move. R is aware of this because to engage in either
of those moves, our construction requires a handoveri or expansion flag to be
displayed along the flag tiles of the wire in the ith direction.

Only after the simulation of the transition function, for moves (m =
idle, contracti) does R∗(α) 6= R∗(β). For moves (m = expandi, handoveri), R
will recognize the intention to expand or handover from the value m, and for
any particle engaged in these moves, R reads the configuration information from
that particle’s configuration tile instead of clock tiles, which contains last turn’s
configuration, until the flags for the move are cleared and the move is complete.
In this way, the moves are simulated as atomic operations, and in the case of
handovers, both atomic and synchronized between the representation of the ini-
tiating particle and that of the subordinate particle. R∗(α) and R∗(β) will remain
equal until cases of amoebot system “configuration level changes”. Throughout
the simulation of a particle’s turn, it may need to send and receive a number of
signals from its own wire ends and neighbors’ wire ends to ensure that the state
transition affected by the central clock tile has all of the information necessary.
These signal changes, which are affected by state changes along the wires and
subordinate clock tiles, do not change the mapping of configuration α, and so
R∗(α) = R∗(β). However, after a particle undergoes its transition function and
changes its state, flags, or makes a move, this is an amoebot system configuration
level action. At the moment that these complete and a macrotile begins to idle
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or contract, the representation of the macrotile changes to R∗(β). On the other
hand, particles engaged in expansion or handover moves are mapped to R∗(α)
until they clear the flag indicating their move from their wires, which takes place
after the new states and flags have been distributed and displayed by all particles
involved in the move. Every macrotile is capable only of simulating the moves
available to the corresponding particle under R, since the moves available to a
particle depend only on the state, flags, and neighborhood, which must match
to be a valid representation under R∗.

We further note that float particles which are detached from the rest of
the assembly map to empty space and therefore do not impact the represented
state of Γ . A float functions as a generic “head” for any particle that wants to
expand. Since the amoebots model operates asynchronously and particles are
only concerned with local information, they can be simulated with macrotiles
similarly concerned only with local information. Since the float tiles do not in-
teract with one another, they effectively float around the configuration which
represents amoebot particles, and attach to any site to which a particle which
is attempting to expand. Then, upon the next activation, or turn, of that simu-
lated particle, should the particle decide to contract to its new (head) location,
the float macrotile stays where it is and the tail macrotile of the particle de-
taches and becomes another float. Upon detachment, the macrotile queries all
of its edges to determine its neighborhood status. Upon recognition that the
macrotile has no neighbors, it transitions internally to a default float state, in-
active with other tiles with the exception of explicitly labeled valid attachment
sites along the perimeter of the swarm. Thus, float tiles simply map to empty
space via R unless and until they attach to the assembly representing the swarm
and are turned into particle heads or tails.

Since Γ models A and A follows Γ , Γ simulates A.

B.1 Signals Between macrotiles

The following section details all of the signals utilized by macrotiles to accurately
simulate amoebot behavior. With the exceptions of the Start Turn Signal and
End Turn Signal, which are propagated via state transitions within the clock,
these signals are propagated via wire transmission from one central clock bank
of a macrotile to a neighboring clock bank via wire transmission. With the
exception of any signals pertaining to handoveri, these signals do not have the
capability to change the state, flags, or t value of any particle macrotile from
which they did not originate.

B.2 List of Signals

1. Lock Signali: To prevent conflicts, we have macrotiles engaged in their turn
send signals to all particles that may be affected by the turn that “lock” the
tiles into their current configuration. A locked macrotile will not activate
even if it receives a timing tile until it receives an unlock signal from the
same direction that sent the lock signal. If two lock signals from different
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macrotiles collide along a shared wire, the resolution depends on where they
collide. If neighboring macrotiles a and b both send lock signals to each other,
and these signals meet along a’s half of the shared wire, then the signal from
b will overwrite the lock signal from a. The opposite is true should they meet
inside b’s wire. If both signals are in the respective extreme tiles of their own
wires, then both are subject to a state transition that will allow either a’s
signal to propagate into b’s wire, allowing a to expand, or b’s signal into a’s
wire, in which case b would be safe to expand. Should an expanded neighbor
of a macrotile receive a lock signal, it further propagates this signal to its
other half, to prevent it from attempting to move and conflict with the active
particle.
Let us represent the lock signal as state L in Γ , which both clock and wire
tiles utilize in addition to the states in Σ for the system they are simulating.
In order to enable these tiles to maintain both their respective states inΣ and
any signals they need to pass, we cross the set of states representing signals
utilized in our construction of Γ by the set of signals and states (Σ,Q) in
A. When a clock tile undergoes a transition with a wire tile to indicate that
the wire should start propagating a lock signal, the wire tile adjacent to the
subordinate clock tile changes states from its previous state f ∈ Σ to Lf ,
a cross of signal L and any potential flag f ∈ Σ. This signal is propagated
down the wire until it hits the exposed flag tile at the end of the wire. If the
exposed flag tile at the end of a wire is not connected to a neighbor, the state
displayed Lf has at least τ strength affinity with ε tiles, enabling connection.
If an epsilon tile attaches to an exposed wire end displaying Lf , both tiles
undergo a directed double state transition which indicates to the flag tile
that there is no neighbor at that location, and simultaneously transitions
the ε tile to a state without affinity to anything else, leaving it inert and
detaching it from the flag tile at the perimeter of the swarm. If a flag tile of
macrotile a displaying a lock signal is connected to a flag tile of neighboring
macrotile b, it waits as is until it receives a confirmation signal L′f ′ from b’s
respective flag tile. Upon receiving the Lf signal from a’s flag tile, b’s flag
tile starts to propagate a cross of its flag f ′ ∈ Σ and a state indicating that
a neighbor has sent a lock signal, Lnf ′. When this signal propagates all the
way to b’s clock bank, the innermost wire tile undergoes a double transition
with its respective subordinate clock tile, leaving the wire tile in state Ln′f ′,
and the clock tile in its previous state crossed with the neighbor lock signal
state Ln. The clock tile that received the Ln signal further propagates it to
the rest of b’s clock, so that b will not respond to timing tiles should they
attach for the duration of the a’s move. The new state Ln′ crossed with the
wire’s existing state f ′ indicates that the clock bank of b has received the
lock signal, and is propagated from b’s clock bank back to the b’s flag tile
facing a. Once a’s flag tile observes the response Ln′f ′ from b’s flag tile, it
propagates the confirmation signal L′f back along the wire to a’s clock bank.
The central clock tile in a maintains a state indicating how many responses
to its lock signal it has received. Once a has received six or ten responses
(depending on whether it is contracted or expanded), it continues its move



28 Alumbaugh, Daymude, Demaine, Patitz, and Richa

by sending out a query signal to all of its wires, to find out the flags displayed
to it by its neighbors.

2. Progressive Lock Signali This signal is functionally identical to the preceding
lockSignali, except that when macrotile a sends this signal to macrotile b,
b further propagates lock signals to its own respective neighborhood. b’s
neighborhood remains locked down until it receives the UnlockSignali from
b, itself contingent upon receiving the UnlockSignali from a. This is utilized
in handoverPulli moves, which require the initiating particle to lock down
both its own and the subordinate particle’s neighborhoods.

3. Unlock Signali: The other half of the Lock Signal, this tells a neighborhood
that they may begin their turns upon receiving a timing tile. This does not
require a response from any macrotile receiving it, as any macrotile unlocking
its neighborhood is done with its turn and will not attempt to move until
its next turn.

4. Copy Signal : When a float attaches to the swarm, it attaches via a single
bond to a specific tile that is actively trying to expand. In order for the
float to become the head of the particle to which it is attaching, it needs
to display the proper flags and state. In the cases where an active macrotile
is attempting to expand along any port other than its 0th port, the copy
signal consists of the active macrotile’s state (q ∈ Q) and the flags pertinent
to the new head (fi, fi+1, ..., fi+4). We know which flags are important to
the new head because the new head will always be in the ith direction, and
we only need that direction’s flag as well as the next four, as the particles
consume two of their potential edges via their connection. This heuristic
for which flags to send (i.e. sending the ith flag and the next four) to the
new head breaks down if a particle is attempting to expand along its 0th
port. In this case, the copy signal consists of the active macrotile’s state
(q ∈ Q) and flags (f0, f1, f2, f8, f9). In this case we make the edge of the
head corresponding to the 0th port in the expanding macrotile the new 0th
port, since we can’t start labeling available edges along the shared edge
of an expanded macrotile. These states and flags are propagated via wire
transmission and stored in the new central clock tile, wire extremities, and
subordinate clock tiles, respectively.

5. Attachment Signal : Given macrotile a and an adjacent unoccupied location
a′ on G∆, this signal is sent from the clock bank of macrotile a to the
wire corresponding to the edge shared between a and a′. Upon reaching the
exposed end of the wire, this signal compels the flag tile to change states to
a state with τ -strength affinity for a float tile’s exposed wire ends. a does
not send the UnlockSignal signal corresponding to the LockSignal that
preceded its expansion until the float assumes its flags and state, facilitated
by a CopySignal. The AcknowledgeSignal following this CopySignal causes
a state change in the flag tile of the newly connected wire which is propagated
back to a’s clock bank, allowing it to safely unlock its neighborhood and end
its turn.

6. Detachment Signal : This signal is sent to the macrotile of an expanded parti-
cle that is not the macrotile occupying the G∆ location to which the particle
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is contracting. It tells the macrotile to switch its internal state and flags to
the default state and flags, which will necessarily detach it from the swarm,
as the default flag has no affinity with the swarm. After detaching, the de-
tached macrotile will query its neighborhood and transition its state and
flags to those of a float after receiving an ε response from all of its edges.

7. HandoverConfirmi: This signal is sent from an initiating macrotile in the
ith direction to check to ensure that the ith neighbor matches the ori-
entation necessary to complete the move (i.e. a macrotile isn’t trying to
handoverPulli with a neighbor that is already expanded, as that would vio-
late the constraint of a particle occupying at most two locations on G∆). This
requires an acknowledgement signal containing the subordinate macrotile’s t
value to ensure validity. After receipt of a valid response from the subordinate
macrotile, the signal sent next by the initiating supertile depends on whether
the initiating particle is executing a handoverPushi or a handoverPulli.
This signal persists at the threshold of the wire shared between the subor-
dinate particle and the particle changing hands until all necessary state and
flag information has been passed successfully, ensuring the tiles engaged in
this move are mapped to their previous configurations. This ensures a clean
mapping from one configuration for a macrotile to another under R, which
will take place instantaneously after the handoveri flag is cleared from the
macrotiles’ respective wires.

8. HandoverPulli: Consider an expanded macrotile a executing a
HandoverPulli move with a contracted macrotile neighboring its tail
b. After b sends a valid AcknowledgementSignal containing its t value and
a decides to continue its turn, a sends a NewHeadSignal to the macrotile of
which it is ceding control. a then sends the ten flag values (f ′0, f

′
2, ...f

′
9) ∈ Σ

and new state q′ ∈ Q combined into a single signal to b. Upon receiving this
signal, b sends out a query signal to each of its edges to determine which of
its neighbors is its new head. After discovering its new t value, b updates its
t value, state, and sends its new flags to their respective ports. b then sends
an AcknowledgementSignal to a indicating that it has assumed control of
the macrotile that changed hands, and a sends out an Unlock signal, which
is further propagated out to all of a and b’s neighborhoods.

9. HandoverPushi: Given a contracted macrotile a executing a
HandoverPushi move with an expanded neighboring macrotile b, as-
suming both are the proper configurations, a sends to its newly acquired
head the following bundled into a single HandoverPushi signal: its own flags
(fi, fi+1, ...fi+4 ∈ Σ), its state (q ∈ Q), and the new t value for the newly
acquired head; new flags (f ′0, f

′
1, ...f

′
5 ∈ Σ), a new state (q′ ∈ Q), and t = ε

for the subordinate macrotile b. The subordinate macrotile strips the infor-
mation pertinent to itself and propagates the rest of the signal further on to
its other half. After the other half sends back an AcknowledgmentSignal
indicating that it has updated, a sends out an unlock signal which is further
propagated out to all of a and b’s neighborhoods.

10. NewHeadSignal: In handoverPull moves, part of an expanded particle is
ceded to an inactive, contracted particle, thereby simultaneously contracting
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the initiating particle and expanding the subordinate particle. This signal
is sent to the macrotile segment of an expanded particle that is changing
owners, telling it to display a special flag on all ports indicating that it
is a newly acquired “head” particle, allowing the subordinate macrotile to
identify which of its neighbors now serves as its head.

11. Query Signal : This signal is sent by the clock tiles to the ends of their wires
to collect the flags displayed by each of the originating macrotile’s neighbors.
Naturally, its domain is Σ ∪ {ε}, with the empty flag returning in the case
that that edge has no neighbor via the usual mechanism of singleton ε tiles.

12. Acknowledgement Signal : Used by particles to respond to requests for infor-
mation not displayed on the flags, such as state or t value. Additionally used
as a confirmation signal with certain handover operations.

13. Start Turn Signal : Any macrotile that is inactive and is not locked down by
a neighbor has an empty tile in its clock bank waiting for the attachment
of a timing tile. Once this timing tile attaches, it uses state transitions to
“activate” the central clock tile, which in turn propagates this signal down
all of its wires so that it can read its neighbors’ flags indexed to it.

14. End Turn Signal : After a macrotile unlocks its neighborhood after a move,
it sends a signal from the central clock tile to the timing tile to detach,
deactivating the particle until next time a timing tile diffuses into its slot
and it is not locked down. This constitutes the End Turn signal.

C Communication Protocol

This section explores an example turn where contracted macrotile a executes a
handoverPush with the tail of its expanded neighbor b. We will list all signals
that will be sent and received by all macrotiles involved, in order. We chose to
use a handover move as our example because they require the greatest number
of signals as well as the greatest signal complexity of any moves available to
particles. For the purposes of this illustration, assume particles start in an inac-
tive state, with their proper flags displayed on their respective flag tiles. Figure 8
shows some condensed snapshots from the turn explored in the following section.

C.1 Example turn

1. Timing tile attaches to a’s clock bank and precipitates a transition, sending
the Start Turn Signal to a’s central clock tile and changing it from (q ×
inactive) to (q × active).

2. The central clock tile of a checks its t value held in the state of the tile to
its immediate west to determine how many responses it should expect and
then sends out the lock signal to all of its wires. a is contracted, and so its
t value = ε, meaning that it should expect six responses from its wires. The
central clock tile maintains both q and a response counter for the duration
of this signal.
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3. After a has received six responses indicating that none of its neighborhood
has sent a competing lock signal, it sends out a query signal to gather the
flags indexed to it by a’s neighbors. This information is necessary for a to
affect the transition function δ in A.

4. When the query signal reaches the end of each of a’s wires, it causes the
flag tiles at the extreme end to change to a state receptive to reading the
state displayed on its neighbor’s flag tile. If a flag tile has no neighbor, the
query signal state also enables connection with ε tiles, which will connect and
undergo a transition to indicate that the wire corresponds to an unoccupied
edge.

5. After six flags or ε’s are propagated back to the tile to the west of a’s clock
bank, the central clock tile undergoes a double transition with the subordi-
nate clock tile to its immediate west. a’s state contains the macrotile’s state,
q, and the subordinate tile to the west’s state contains the combined six flags
of a’s wires as well as the t value.

6. After the state transition effecting both the central clock tile and the subor-
dinate clock tile to its west, the central clock tile contains the new state,
q ∈ Q, as well as the move m = handoverPushi, where i is the port
in the direction of b’s tail. The tile to the west contains the new flags
for a, (f0, f1, ..., f9) ∈ Σ10, particle a’s E value = i, the new flags for b,
(f ′0, f

′
1, ..., f

′
5) ∈ Σ6, b’s new state q′ ∈ Q, and the new t value for b = ε.

7. Because m = handoverPushi, a needs to check its neighbor in the ith di-
rection to ensure that they have the proper configuration to enable to move.
It sends a handoverConfirmi signal to the neighbor in its ith direction and
waits for an Acknowledgement signal in response containing b’s t value.

8. b’s tail responds by sending b’s t value in an Acknowledgement Signal to a.
9. Since b’s t value 6= ε, b is a valid neighbor with which a can execute

the handoverPushi movement. a continues by sending a handoverPushi
signal along its ith port, to b’s tail. This signal contains five new flags
(fi, fi+1, ...fi+4) ∈ Σ, as well as a copy of a’s state q and the new t
value for b’s tail, soon to become a’s head. It additionally contains six flags
(f ′0, f

′
1, ..., f

′
5) as well as the new t value = ε for b’s head.

10. After receiving the handoverPushi signal from a, at least one of b’s wires
will display a flag indicating that it is engaged with a handover move, ad-
ditionally, b’s tail updates its state, t value and flags. It further propagates
the handoverPushi signal to b’s head. b’s tail will continue to map to b until
the final signal ending the move clears the any flags indicating to the repre-
sentation function that the macrotile displaying that flag is undergoing an
expansion or handover move.

11. Once b’s head receives the handoverPushi signal from its tail, it updates its
state, flags, and t value as well. After doing so, it sends an Acknowledgement
signal to b’s tail, indicating that it has updated its state, flags, and t value.

12. b’s tail propagates b’s head’s Acknowledgement signal back to a. This ac-
knowledgement signal clears any flags indicating a macrotile’s partaking in
an expansion or handover move, and so after it passes through what was
formerly b’s head and tail, those tiles respectively map to b and a’s head.
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13. Upon receiving the Acknowledgment signal indicating that the move has
been completed, a sends out an unlock signal to its neighborhood.

14. The newly expanded macrotile a detaches the its timing tile by the central
clock tile transitioning the timing tile from an active state to an inactive
state, which has no affinities.
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Fig. 8: (1)The initial configuration of a subset of a valid swarm. Note that only
A has a purple timing tile to the right of its Central Clock tile. (2) The flow of
the LockSignali sent out from A’s CC tile. (3) The responses from A’s wires
flow back to the CC tile. Unoccupied edges allow for the attachment of yellow
epsilon tiles, which indicate to a given wire that it has no macrotile neighbor. A
has no neighbors attempting their own move, and is safe to continue its move.
(4) A is attempting to execute a handover, and so much check to ensure that the
subordinate particle it intends to use is in the proper configuration. It sends out
a handoverConfirmi signal, to which B responds with an Acknowledgement
signal containing B’s t value. (5) Since B is in the proper configuration to en-
able a handoverPushi, A continues by sending a handoverPushi signal to the
subordinate macrotile it wants to take over. The subordinate macrotile Bt strips
the flags, state, and new t value pertinent to itself and propagates the remaining
new flags, state and t value to its other half Bh. (6) Bh alters its state and flags
in response to the signal it has just received and sends back an acknowledgement
signal to its tail. As this signal travels through the shared wires between Bh and
Bt, it clears the handover flags which indicate to the representation function
that it should check those macrotiles’ configuration tile for information instead
of flags and the CC tile for the state. The clearing of these flags is the event
that precipitates the transition of the representation of the macrotile displaying
them, so that R∗(α) 6= R∗(β), where α and β are the macrotile before and after
this step. (7) Finally, At receives the acknowledgement signal propagated from
what now maps to Ah, so it sends out a final Unlock signal to all of its neighbor-
hood and A ends the turn by the CC undergoing a transition with the timing
tile, rendering inert and without affinities, thereby detaching it.
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