Skip to main content

Symbolic-Numeric Implementation of the Four Potential Method for Calculating Normal Modes: An Example of Square Electromagnetic Waveguide with Rectangular Insert

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11661))

Abstract

In this paper, the Maple computer algebra system is used to construct a symbolic-numeric implementation of the method for calculating normal modes of square closed waveguides in a vector formulation. The method earlier proposed by Malykh et al. [M.D. Malykh, L.A. Sevastianov, A.A. Tiutiunnik, N.E. Nikolaev. On the representation of electromagnetic fields in closed waveguides using four scalar potentials // Journal of Electromagnetic Waves and Applications, 32 (7), 886–898 (2018)] will be referred to as the method of four potentials. The Maple system is used at all stages of treating the system of differential equations for four potentials: the generation of the Galerkin basis, the substitution of approximate solution into the system under study, the formulation of a computational problem, and its approximate solution.

Thanks to the symbolic-numeric implementation of the method, it is possible to carry out calculations for a large number of basis functions of the Galerkin decomposition with reasonable computation time and then to investigate the convergence of the method and verify it, which is done in the present paper, too.

The publication has been prepared with the support of the “RUDN University Program 5-100”  and funded by RFBR according to the research projects Nos. 18-07-00567 and 18-51-18005.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Malykh, M.D., Sevastianov, L.A., Tiutiunnik, A.A., Nikolaev, N.E.: On the representation of electromagnetic fields in closed waveguides using four scalar potentials. J. Electromagn. Waves Appl. 32(7), 886–898 (2018)

    Article  Google Scholar 

  2. Divakov, D.V., Lovetskiy, K.P., Malykh, M.D., Tiutiunnik, A.A.: The application of Helmholtz decomposition method to investigation of multicore fibers and their application in next-generation communications systems. Commun. Comput. Inf. Sci. 919, 469–480 (2018)

    Google Scholar 

  3. Gusev, A.A., et al.: Symbolic-numerical algorithms for solving the parametric self-adjoint 2D elliptic boundary-value problem using high-accuracy finite element method. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 151–166. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66320-3_12

    Chapter  Google Scholar 

  4. Gusev, A.A., et al.: Symbolic-numerical algorithm for generating interpolation multivariate hermite polynomials of high-accuracy finite element method. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 134–150. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66320-3_11

    Chapter  Google Scholar 

  5. Shapeev, V.P., Vorozhtsov, E.V.: The method of collocations and least residuals combining the integral form of collocation equations and the matching differential relations at the solution of pdes. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 346–361. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66320-3_25

    Chapter  Google Scholar 

  6. Sevastyanov, L.A., Sevastyanov, A.L., Tyutyunnik, A.A.: Analytical calculations in maple to implement the method of adiabatic modes for modelling smoothly irregular integrated optical waveguide structures. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 419–431. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10515-4_30

    Chapter  MATH  Google Scholar 

  7. Bertolazzi, E., Biral, F., Da Lio, M.: Symbolic-numeric efficient solution of optimal control problems for multibody systems. J. Comput. Appl. Math. 185(2), 404–421 (2006)

    Article  MathSciNet  Google Scholar 

  8. Gutnik, S.A., Sarychev, V.A.: Symbolic-numerical methods of studying equilibrium positions of a gyrostat satellite. Program. Comput. Softw. 40(3), 143–150 (2014)

    Article  MathSciNet  Google Scholar 

  9. Budzko, D.A., Prokopenya, A.N.: Symbolic-numerical analysis of Equilibrium solutions in a restricted four-body problem. Program. Comput. Softw. 36(2), 68–74 (2010)

    Article  MathSciNet  Google Scholar 

  10. Shapeev, V.P., Vorozhtsov, E.V.: Symbolic-numerical optimization and realization of the method of collocations and least residuals for solving the Navier-stokes equations. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2016. LNCS, vol. 9890, pp. 473–488. Springer, Cham (2016)

    Google Scholar 

  11. Semin, L., Shapeev, V.: Constructing the numerical method for Navier-stokes equations using computer algebra system. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 367–378. Springer, Berlin (2005)

    Google Scholar 

  12. Shapeev, V.P., Vorozhtsov, E.V.: CAS application to the construction of the collocations and least residuals method for the solution of 3D Navier-stokes equations. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 381–392. Springer, Cham (2013)

    Google Scholar 

  13. Shapeev, V.P., Vorozhtsov, E.V.: Symbolic-numeric implementation of the method of collocations and least squares for 3D Navier-stokes equations. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 321–333. Springer, Heidelberg (2012)

    Google Scholar 

  14. Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis. Wiley, New York (1964)

    MATH  Google Scholar 

  15. Fletcher, C.A.J.: Computational Galerkin Methods. Springer-Verlag, Heidelberg (1984)

    Book  Google Scholar 

  16. Adams, M.J.: An Introduction to Optical Waveguides. Wiley, New York (1981)

    Google Scholar 

  17. Marcuse, D.: Light Transmission Optics. Van Nostrand, New York (1974)

    Google Scholar 

  18. Tamir, T.: Guided-Wave Optoelectronics. Springer-Verlag, Berlin (1990)

    Book  Google Scholar 

  19. Ladyzhenskaya, O.A.: The Boundary Value Problems of Mathematical Physics. Springer, Heidelberg (1985)

    Book  Google Scholar 

  20. Hellwig, G.: Differential Operators of Mathematical Physics. Addison-Wesley, MA (1967)

    MATH  Google Scholar 

  21. Bathe, K.J.: Finite Element Procedures in Engineering Analysis. Prentice Hall, Englewood Cliffs (1982)

    Google Scholar 

  22. Ciarlet, P.: The Finite Element Method for Elliptic Problems. North Holland Publishing Company, Amsterdam (1978)

    MATH  Google Scholar 

  23. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  24. Bogolyubov, A.N., Mukhartova, Yu.V., Gao, J., Bogolyubov, N.A.: Mathematical modeling of plane chiral waveguide using mixed finite elements. In: Progress in Electromagnetics Research Symposium, pp. 1216–1219 (2012)

    Google Scholar 

  25. Bogolyubov, A.N., Mukhartova, Y.V., Gao, T.: Calculation of a parallel-plate waveguide with a chiral insert by the mixed finite element method. Math. Models Compu. Simul. 5(5), 416–428 (2013)

    Article  Google Scholar 

  26. Mukhartova, Y.V., Mongush, O.O., Bogolyubov, A.N.: Application of the finite-element method for solving a spectral problem in a waveguide with piecewise constant bi-isotropic filling. J. Commun. Technol. Electron. 62(1), 1–13 (2017)

    Article  Google Scholar 

  27. Sveshnikov, A.G.: The basis for a method of calculating irregular waveguides. Comput. Math. Math. Phys. 3(1), 170–179 (1963)

    Article  Google Scholar 

  28. Sveshnikov, A.G.: A substantiation of a method for computing the propagation of electromagnetic oscillations in irregular waveguides. Comput. Math. Math. Phys. 3(2), 314–326 (1963)

    Article  Google Scholar 

  29. Mathematics-based software and services for education, engineering, and research. https://www.maplesoft.com/

  30. Anderson, E., et al.: LAPACK Users’ Guide, 3rd edn. SIAM, Philadelphia (1999). http://www.netlib.org/lapack/lug

    Book  Google Scholar 

  31. LAPACK Users’ Guide Release. http://www.netlib.org/lapack/lug/node93.html

  32. Bellman, R.: Introduction to Matrix Analysis. McGraw-Hill, New York (1960)

    MATH  Google Scholar 

  33. Kressner, D.: Numerical Methods for General and Structured Eigenvalue Problems. Springer, Berlin (2006)

    MATH  Google Scholar 

  34. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  35. Van Loan, C.: On estimating the condition of eigenvalues and eigenvectors. Linear Algebra Appl. 88–89, 715–732 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Divakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tiutiunnik, A.A., Divakov, D.V., Malykh, M.D., Sevastianov, L.A. (2019). Symbolic-Numeric Implementation of the Four Potential Method for Calculating Normal Modes: An Example of Square Electromagnetic Waveguide with Rectangular Insert. In: England, M., Koepf, W., Sadykov, T., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2019. Lecture Notes in Computer Science(), vol 11661. Springer, Cham. https://doi.org/10.1007/978-3-030-26831-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26831-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26830-5

  • Online ISBN: 978-3-030-26831-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics