
ar
X

iv
:1

90
6.

10
80

5v
2

 [
m

at
h.

N
A

]
 1

9
A

ug
 2

01
9 Counting Roots of a Polynomial in a Convex

Compact Region by Means of Winding Number

Calculation via Sampling

Vitaly Zaderman[1] and Liang Zhao[2]

[1] Ph.D. Program in Mathematics,

The Graduate Center of the City University of New York,

New York, NY 10016, USA

vza52@aol.com
[2] Department of Computer Science,

The Graduate Center of the City University of New York,

New York, NY 10016, USA

liang.zhao1@lehman.cuny.edu

Abstract

In this paper, we propose a novel efficient algorithm for calculating

winding numbers, aiming at counting the number of roots of a given poly-

nomial in a convex region on the complex plane. This algorithm can

be used for counting and exclusion tests in a subdivision algorithms for

polynomial root-finding, and would be especially useful in application sce-

narios where high-precision polynomial coefficients are hard to obtain but

we succeed with counting already by using polynomial evaluation with

lower precision. We provide the pseudo code of the algorithm, proof of its

correctness as well as estimation of its complexity.

Key Words: Polynomial root-finding; Winding number

1 Introduction

Let

p(z) =

d
∑

k=0

pkz
k = pd

d
∏

j=1

(z − zj), pd 6= 0 (1)

be a polynomial of degree d with real or complex coefficients. Counting its roots
(with their multiplicity) in a fixed domain (such as an interior of a polygon or

1

http://arxiv.org/abs/1906.10805v2

a disc) is a fundamental problem with an important application to devising
efficient root-finders for p(z) on the complex plane, particularly subdivision
algorithms, proposed by Hermann Weyl in [10] and then extended and improved
in [4], [3], [8], [7], [1], and [2] 1 and recently implemented in [6].

We propose a new algorithm for counting the roots in a fixed convex region on
the complex plane by expressing their number as the winding number computed
along the boundary of the region, provided that the boundary was sufficiently
isolated from the roots of p(z).

Winding number algorithms have been proposed for counting roots in a disc
as parts of root-finding algorithms by Henrici and Gargantini in [4], then by
Henrici in [3] and by Renegar in [8]. Pan in [7] used root-radii algorithm by
Schönhage [9] for counting roots in a disc, and Becker et al. in [1] and [2]
performed counting based on Pellet’s theorem.

Our winding number computation shares some techniques with the algo-
rithms of [3] and [8], but there the algorithms have only devised in the special
case of a disc rather than an arbitrary convex compact region, and unlike these
papers we ensure numerical stability of our computation of the winding number.
Another method using insertion technique, but not requiring isolation of the in-
put region has been proposed by Zapata and Martin in [11], [12]. We evaluate an
input polynomial p(z) at some additional auxiliary points that we insert a priori
on the boundary of the input region. In this way we made our parametrization
is smooth on the associated sub-segments of the boundary curve.

Our proposed root-counting algorithm has the following computational ad-
vantages:

• It does not involve polynomial coefficients: only polynomial evaluations
are required. This is especially useful when polynomial evaluations can be
provided as a fast ”black box”.

• Computational precision can be kept low: the algorithm outputs the wind-
ing number correctly as long as polynomial evaluations are precise enough
to indicate correctly the quadrant of the complex plane in which the values
of the polynomial lies.

• Besides evaluating polynomials, only integer calculations are involved.

We present our algorithm in the next section and then continue the paper
in section 3 by proving its correctness.

2 Winding Number Calculation via Sampling

Suppose that p(z) is a polynomial of Eqn. (1), γ : [0, 1]→ C is a simple convex
closed piece-wise smooth curve, and Γ is the region enclosed by γ. The winding

1The authors of [4], [3], [7] called it Quadtree algorithm, and under that name it was
extensively used in computational geometry.

2

number ωp◦γ of a curve p◦γ is the number of counterclockwise turns that p(γ(t))
makes around the origin as t increases from 0 to 1. Namely,

ωp◦γ =
1

2π

∮

γ

p′(z)

p(z)
dz =

1

2π

∫ 1

0

p′(γ(t))γ′(t)

p(γ(t))
dt. (2)

Hereafter we write ω := ωp◦γ omitting the subscript p ◦ γ. It is well-known by
principle of argument, that if (p ◦ γ)(t) 6= 0 for all t ∈ [0, 1], then the winding
number ω is a well-defined integer equals to the number of the roots of p(z)
inside the region bounded by Γ.

In this paper we aim at developing algorithm that calculates winding num-
bers of p ◦ γ, where p is a univariate polynomial whose roots lie reasonably
far from γ. In particular, such algorithm can be applied to circles, squares or
polygons. Before diving into the details of the algorithm, we should clarify the
assumptions about the curve γ : [0, 1]→ C.

Assumptions on γ.

1. γ is the boundary of a connected convex region Γ on the complex plane.

It is a convex closed curve, i.e., γ(0) = γ(1).

2. There exists the continuous derivative γ′(t) except for t lying in a finite
subset T ⊂ [0, 1] (which is relatively small).

3. Furthermore the derivative γ′(t) is bounded by L from above, that is,

L = max
t∈[0,1]\T

|γ′(t)| (3)

4. γ is 2
3r-isolating the roots of polynomial

p(z), meaning that the minimum distance between a point on the curve
γ and a root of p(z) is at least 2

3r where r denotes the minimal distance
between the

origin and the curve p ◦ γ, that is,

r = min
t∈[0,1]

|(p ◦ γ)(t)|. (4)

In particular (p ◦ γ)(t) 6= 0 for all t ∈ [0, 1].

Remark 1. For a convex domain with a center (which covers a disc and an
interior of a rectangle as particular cases) we can define its dilation with a
coefficient θ > 1. If the number of roots of p(z) in the domain is invariant in its
dilation with coefficients θ and 1/θ, then we call the domain θ-isolated. We can
square isolation coefficient θ by performing Dandelin’s root-squaring iteration
p(z)→ (−1)d p(

√
z)p(−√z) (cf. [5]). s iterations

p0(z) = p(z), pj+1(z) = (−1)d pj(
√
z)pj(−

√
z), j = 0, 1, . . . , s

change that coefficient into θ2
s

.

3

The core idea of our winding number algorithm is to compute the number
of turns of Γ around 0. We do it by computing polynomial in finite number
of points t0, ..., tN ∈ [0, 1]. More precisely we correctly compute the number of
roots in a given region if for every i the actual value p(γ(ti)) and the computed
value of p(x) at the point γ(ti) lie in the same quadrant on the complex plane,
labeled by the following integers m(p(γ(ti)).

Definition 1. Given polynomial p(z), closed curve γ : [0, 1]→ C, and t ∈ [0, 1],
the quadrant label mt = m((p ◦ γ)(t)) is defined as

mt = m((p ◦ γ)(t)) =















0 if Re((p ◦ γ)(t)) > 0, Im((p ◦ γ)(t)) ≥ 0
1 if Re((p ◦ γ)(t)) ≤ 0, Im((p ◦ γ)(t)) > 0
2 if Re((p ◦ γ)(t)) < 0, Im((p ◦ γ)(t) ≤ 0
3 if Re((p ◦ γ)(t)) ≥ 0, Im((p ◦ γ)(t)) < 0

(5)

We simplify the notation letting the integersm0, ...,mN denote the quadrant
labels for a sequence 0 = t0 < t1 < · · · < tN ≤ 1.

We are going to prove that the winding number increases by 1 (respectively,
decreases by 1) whenever a sub-sequence (m0, ...,ml) goes through all four quad-
rants counterclockwise (respectively, clockwise).

1→ 2→ 3→ 3→ 0→ 1 is an example of a full counterclockwise cycle, and
3→ 2→ 1→ 2→ 1→ 0→ 3 is an example of a full clockwise cycle.

Notice that in the latter example the labels go counterclockwise at some
point (the 1 → 2 part), but do not complete a full counterclockwise cycle and
thus make no impact on the value of winding number.

To calculate the number of cycles in quadrant labels, we take the difference
of each quadrant label with its preceding label modulo 4. For example, the
difference between label 2 and its preceding label 1 is 2 − 1 ≡ 1(mod 4); the
difference between label 0 and its preceding label 3 is also 1, since 0− 3 = −3 ≡
1(mod 4).

Notice that for a counterclockwise cycle, the overall sum of these differences
must equal 4 (as there must be 4 net increases in quadrant labels); for a clock-
wise cycle, the overall sum of the label differences must be -4 (as there must
be 4 net decreases in quadrant labels). As a result, if we construct sequence
m(0), ...,m(N) where m(0) = m0 and m(k) for k = 1, ..., N are chosen such
that m(k)−m(k − 1) ∈ {0, 1, 2, 3} and m(k)−m(k− 1) ≡ mk −mk−1(mod 4),
then (m(N)−m(0))/4 will be the number of counterclockwise cycles minus the
number of clockwise cycles.

In order to establish the link between winding number and the cycles of
quadrant labels, we need to eliminate two possibilities: 1) a full cycle of the
curve that does not correspond to a full cycle of quadrant labels (this may
happen if the sampled points are too far apart, for instance only three first-
quadrant points from a cycle are sampled, showing labels 0 → 0 → 0), and 2)
we cannot determine whether a full cycle of quadrant labels is a clockwise or
counterclockwise cycle (this may happen when two consecutive quadrant labels
differ by more than 1, e.g., if 0 → 2 → 0). Our winding number algorithm

4

ensures that the points are sampled properly so that neither bad scenario will
occur, and so the winding number can be calculated correctly as

ω =
m(N)−m(0)

4
. (6)

Algorithm 1 The Winding Number Algorithm

Require: A polynomial p(z) =
∑d

k=0 pkx
k, a region Γ with boundary

parametrized as a piece-wise smooth curve γ : [0, 1]→ C, r > 0, L > 0.
Ensure: A positive integer ω such that if γ, r, L satisfy Assumption 1-4, then

ω equals to the winding number of p ◦ γ.
1: Sample N = ⌈ 12dL

πr
⌉ + |T | points 0 = t0 < t1 < · · · < tN ≤ 1 such that

T ⊂ {ti : 0 ≤ i ≤ N} and ti− ti−1 ≤ πr
12dL for all i = 1, ..., N +1, tN+1 := t0.

2: m0 ← the quadrant label of (p ◦ γ)(t0).
3: for i=1 to N do

4: mi ← the quadrant label of (p ◦ γ)(ti)
5: Choose m(i) such that {0, 1, 2, 3} ∋ m(i)−m(i−1) ≡ mi−mi−1(mod 4).
6: end for i
7: return

m(N)−m(0)
4 .

3 Correctness of the Winding Number

Algorithm

In this section we prove that our algorithm indeed produces correct winding
number.

Theorem 1. For a degree d univariate polynomial p(z), a parametrized curve
satisfying Assumption 1 - 4, and a sequence 0 = t0 < t1 < · · · < tN ≤ 1 such that
|ti − ti−1| ≤ πr

12dL for all i = 1, ..., N + 1, tN+1 := t0, construct using Algorithm
1 a sequence of integers m(0), ...,m(N) such that m(0) = m0, m(i)−m(i−1) ∈
{0, 1, 2, 3}, and m(i)−m(i− 1) ≡ mi −mi−1(mod 4) for i = 1, ..., N , where mi

is the quadrant label of (p ◦ γ)(ti). Then the winding number ω of p(z) along
curve γ is equal to

ω =
m(N)−m(0)

4
. (7)

Proof. On each segment [ti, ti−1], γ(t) is smooth. If a sequence of consecutive
labels m(i),m(i+1), ...,m(j) completes a counterclockwise cycle, then the sum
of differences must equal to 4, i.e.,

m(j)−m(i) =

j−1
∑

k=i

(m(k + 1)−m(k)) = 4. (8)

5

Similarly, a sequence of labels representing a clockwise cycle must satisfy m(j)−
m(i) = −4. Thus the overall sum m(N)−m(0)

4 is equal to the number of counter-
clockwise cycles minus the number of clockwise cycles. Given this property, it
suffices to show that for any i = 1, ..., N it holds that

1. It is impossible that the curve p ◦ γ can complete a full turn in [ti, ti+1],
that is,

1

2π

∫ ti

ti−1

p′(γ(t))γ′(t)

p(γ(t))
dt < 1 (9)

.

2. The quadrant labels mi differs from mi−1 by at most 1, that is,

|mi −mi−1| ≤ 1. (10)

Proof of claim 1. Recall that p(z) = pd
∏d

j=1(z − zj) and that

p′(z)

p(z)
=

d
∑

j=1

1

z − zj
. (11)

We will show that the integral in Eqn. (9) is less than 2π. It follows that

∣

∣

∫ ti

ti−1

p′(γ(t))γ′(t)

p(γ(t))
dt
∣

∣ ≤
∫ ti

ti−1

∣

∣

p′(γ(t))

p(γ(t))

∣

∣|γ′(t)|dt

≤L
∫ ti

ti−1

d
∑

j=1

∣

∣

1

γ(t)− zj

∣

∣dt

≤L
∫ ti

ti−1

3d

r
dt

=
3dL

r
(ti − ti−1)

≤3dL

r
· πr

12dL

=
π

4
< 2π.

(12)

This verifies Eqn. (9).
Proof of claim 2. If mi differs from mi−1 by more than one, then the path

(p ◦ γ)(t) would cross both the real axis and the imaginary axis as t increases
from ti−1 to ti. As a consequence, the argument of (p ◦ γ)(t) would change at
least by π/4. Since

arg((p ◦ γ)(t)) =
d

∑

j=1

arg((γ(t) − zj), (13)

6

there exists at least one j such that arg(γ(ti)− zj) differs from arg(γ(ti−1)−
zj) by more than π/(4d). Next we will show that this is impossible, because
according to the choice of samples, γ(ti) is very close to γ(ti−1). On one
hand,

|γ(ti)− γ(ti−1)| ≤ L|ti − ti−1| ≤
πr

12d
. (14)

On the other hand, both |γ(ti) − zj| and |γ(ti−1) − zj| are at least 2r/3
and their arguments differ by at least π/4d. Let θ1 = arg(γ(ti) − zj) and
θ2 = arg(γ(ti−1)− zj), θ1 6= θ2 then

|γ(ti)− γ(ti−1)| =|(γ(ti)− zj)− (γ(ti−1)− zj)|

≥|2r
3
eθ1i − r

3
eθ2i|

=
2r

3
|e(θ1−θ2)i − 1|

>
2r

3
· |θ1 − θ2|/2

≥ πr

12d
.

(15)

A contradiction proves the claim.

Computation Complexity The complexity of the algorithm is dominated
by the evaluations of the polynomial at N sampled points. Besides polynomial
evaluation, the algorithm only requires arithmetic of small integers (mostly less
than 8). The value of N is proportional to the Lipschitz bound L defined in
Assumption 3. Thus the speed of the algorithm is determined by how fast it
can obtain polynomial evaluations at sampled points. If the region is the unit
disc {z : |z| ≤ 1}, then we can evaluate p(z) at 2h equally-spaced points on the
unit boundary circle {z : |z| = 1} and by using FFT, would correctly compute
the number of roots of p(z) in the disc at a arithmetic cost in Õ(dL), which
means O(dL) up to poly-logarithmic factors in dL.

Acknowledgements: Our research has been supported by the NSF Grant
CCF–1563942 , NSF Grant CCF-1733834, and the PSC CUNY Award 69813
00 48.

References

[1] Becker, R., Sagraloff, M., Sharma, V., Xu, J., Yap, C.: Complexity
analysis of root clustering for a complex polynomial. In: Proceedings
of the ACM on International Symposium on Symbolic and Algebraic
Computation. pp. 71-78. ACM (2016)

7

[2] Becker, R., Sagraloff, M., Sharma, V., Yap, C.: A near-optimal sub-
division algorithm for complex root isolation based on the Pellet test
and Newton iteration. J. Symb. Comput. 86, 51-96 (2018)

[3] Henrici, P.: Applied and computational complex analysis. vol. 1, power
series, integration, conformal mapping, location of zeros. John Wiley
(1974)

[4] Henrici, P., Gargantini, I.: Uniformly convergent algorithms for the
simultaneous approximation of all zeros of a polynomial. In: Con-
structive Aspects of the Fundamental Theorem of Algebra. pp. 77-113.
Wiley-Interscience New York (1969)

[5] Householder, A.S.: Dandelin, Lobachevski, or Graeffe? Am. Math.
Mon. 66(6), 464-466 (1959)

[6] Imbach, R., Pan, V.Y., Yap, C.: Implementation of a near-optimal
complex root clustering algorithm. In: International Congress on Math-
ematical Software. pp. 235-244. Springer (2018)

[7] Pan, V.Y.: Approximating complex polynomial zeros: modified Weyl’s
quadtree construction and improved newton’s iteration. J. Complex.
16(1), 213-264 (2000)

[8] Renegar, J.: On the worst-case arithmetic complexity of approximating
zeros of polynomials. J. Complex. 3(2), 90-113 (1987)

[9] Schönhage, A.: The fundamental theorem of algebra in terms of compu-
tational complexity. Manuscript. Univ. of Tubingen, Germany (1982)

[10] Weyl, H.: Randbemerkungen zu hauptproblem der mathematik. Math-
ematische Zeitschrift 20, 131-150 (1924)

[11] Zapata, J.L.G., Martin, J.C.D.: A geometric algorithm for winding
number computation with complexity analysis. J. Complex. 28(3), 320-
345 (2012)

[12] Zapata, J.L.G., Martin, J.C.D.: Finding the number of roots of a poly-
nomial in a plane region using the winding number. Comput. Math.
Appl. 67(3), 555-568 (2014)

8

	1 Introduction
	2 Winding Number Calculation via Sampling
	3 Correctness of the Winding Number Algorithm

