Lecture Notes in Computer Science

11693

Founding Editors

Gerhard Goos

Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis

Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino

Purdue University, West Lafayette, IN, USA

Wen Gao

Peking University, Beijing, China

Bernhard Steffen

TU Dortmund University, Dortmund, Germany

Gerhard Woeginger

RWTH Aachen, Aachen, Germany

Moti Yung

Columbia University, New York, NY, USA

More information about this series at http://www.springer.com/series/7410

Advances in Cryptology – CRYPTO 2019

39th Annual International Cryptology Conference Santa Barbara, CA, USA, August 18–22, 2019 Proceedings, Part II

Editors Alexandra Boldyreva Georgia Institute of Technology Atlanta, GA, USA

Daniele Micciancio University of California at San Diego La Jolla, CA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Computer Science ISBN 978-3-030-26950-0 ISBN 978-3-030-26951-7 (eBook) https://doi.org/10.1007/978-3-030-26951-7

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The 39th International Cryptology Conference (Crypto 2019) was held at the University of California, Santa Barbara, California, USA, during August 18–22, 2019. It was sponsored by the International Association for Cryptologic Research (IACR). As in the previous year, a number of workshops took place on the days (August 17 and August 18, 2019) immediately before the conference. This year, the list of affiliated events included a Workshop on Attacks in Cryptography organized by Juraj Somorovsky (Ruhr University Bochum); a Blockchain Workshop organized by Rafael Pass (Cornell Tech) and Elaine Shi (Cornell); a Workshop on Advanced Cryptography Standardization organized by Daniel Benarroch (QEDIT) and Tancrède Lepoint (Google); a workshop on New Roads to Cryptopia organized by Amit Sahai (UCLA); a Privacy Preserving Machine Learning Workshop organized by Gilad Asharov (JP Morgan AI Research), Rafail Ostrovsky (UCLA) and Antigoni Polychroniadou (JP Morgan AI Research); and the Mathcrypt Workshop organized by Kristin Lauter (Microsoft Research), Yongsoo Song (Microsoft Research) and Jung Hee Cheon (Seoul National University).

Crypto continues to grow, year after year, and Crypto 2019 was no exception. The conference set new records for both submissions and publications, with a whopping 378 papers submitted for consideration. It took a Program Committee (PC) of 51 cryptography experts working with 333 external reviewers for over two months to select the 81 papers which were accepted for the conference.

As usual, papers were reviewed in the double-blind fashion, with each paper assigned to three PC members. Initially, papers received independent reviews, without any communication between PC members. After the initial review stage, authors were given the opportunity to comment on all available preliminary reviews. Finally, the PC discussed each submission, taking all reviews and author comments into account, and selecting the list of papers to be included in the conference program. PC members were limited to two submissions, and their submissions were held to higher standards. The two Program Chairs were not allowed to submit papers.

The PC recognized three papers and their authors for standing out amongst the rest. "Cryptanalysis of OCB2: Attacks on Authenticity and Confidentiality", by Akiko Inoue, Tetsu Iwata, Kazuhiko Minematsu and Bertram Poettering was voted Best Paper of the conference. Additionally, the papers "Quantum cryptanalysis in the RAM model: Claw-finding attacks on SIKE" by Samuel Jaques and John M. Schanck, and "Fully Secure Attribute-Based Encryption for t-CNF from LWE" by Rotem Tsabary, were voted Best Papers Authored Exclusively By Young Researchers.

Beside the technical presentations, Crypto 2019 featured a Rump session, and two invited talks by Jonathan Katz from University of Maryland, and Helen Nissenbaum from Cornell Tech.

vi Preface

We would like to express our sincere gratitude to all the reviewers for volunteering their time and knowledge in order to select a great program for 2019. Additionally, we are very appreciative of the following individuals and organizations for helping make Crypto 2019 a success:

- Muthu Venkitasubramaniam (University of Rochester) Crypto 2019 General Chair
- Carmit Hazay (Bar-Ilan University) Workshop Chair
- Jonathan Katz (University of Maryland) Invited Speaker
- Helen Nissenbaum (Cornell Tech) Invited Speaker
- Shai Halevi Author of the IACR Web Submission and Review System
- Anna Kramer and her colleagues at Springer
- Whitney Morris and UCSB Conference Services

We would also like to say thank you to our numerous sponsors, the workshop organizers, everyone who submitted papers, the session chairs, and the presenters. Lastly, a big thanks to everyone who attended the conference at UCSB.

August 2019

Alexandra Boldyreva Daniele Micciancio

CRYPTO 2019

The 39th International Cryptology Conference

University of California, Santa Barbara, CA, USA August 18–22, 2019

Sponsored by the International Association for Cryptologic Research

General Chair

Muthu Venkitasubramaniam University of Rochester, USA

Program Chairs

Alexandra Boldyreva Georgia Institute of Technology, USA
Daniele Micciancio University of California at San Diego, USA

Program Committee

Manuel Barbosa INESC TEC, University of Porto, Portugal Zvika Brakerski Weizmann Institute of Science, Israel Mark Bun Simons Institute, Boston University, USA

Ran Canetti Tel Aviv University, Israel, and Boston University,

USA

Dario Catalano University of Catania, Italy

Alessandro Chiesa UC Berkeley, USA

Sherman S. M. Chow Chinese University of Hong Kong, SAR China

Kai-Min Chung Academia Sinica, Taiwan

Jean-Sebastien Coron Luxembourg University, Luxembourg

Jean Paul Degabriele TU Darmstadt, Germany

Nico Döttling Cispa Helmholtz Center (i.G.), Germany

Orr Dunkelman University of Haifa, Israel Rosario Gennaro City College, CUNY, USA

Tim Güneysu Ruhr University Bochum, DFKI, Germany

Felix Günther UC San Diego, USA Siyao Guo NYU Shanghai, China

Sean Hallgren Pennsylvania State University, USA

Carmit Hazay Bar-Ilan University, Israel

Susan Hohenberger
Sorina Ionica
Université de Picardie, France
Bhavana Kanukurthi
Vladimir Kolesnikov
Johns Hopkins University, USA
Université de Picardie, France
Indian Institute of Science, India
Georgia Institute of Technology, USA

Anja Lehmann IBM Research Zurich, Switzerland Vadim Lyubashevsky IBM Research Zurich, Switzerland

Ilya Mironov Google

Michael Naehrig Microsoft Research Svetla Nikova KU Leuven, Belgium

Ryo Nishimaki NTT Secure Platform Labs, Japan

Omer Paneth MIT, USA

Charalampos Papamanthou
Chris Peikert
University of Maryland, USA
University of Michigan, USA
University of Salerno, Italy
University of Birmingham, UK

Thomas Peyrin Nanyang Technological University, Singapore

Benny Pinkas Bar Ilan University, Israel

Bertram Poettering Royal Holloway, University of London, UK

Mariana Raykova Yale University, USA Silas Richelson UC Riverside, USA

Adeline Roux-Langlois University Rennes, CNRS, IRISA, France

Peter Scholl Aarhus University, Denmark

Dominique Schröder Friedrich-Alexander-Universität, Germany

Thomas Shrimpton University of Florida, USA

Damien Stehlé ENS Lyon, France

Björn Tackmann IBM Research Zurich, Switzerland Keisuke Tanaka Tokyo Institute of Technology, Japan

Eran Tromer Tel Aviv University, Israel, and Columbia University,

USA

Daniele Venturi
Xiao Wang
Xiaoyun Wang
Bogdan Warinschi
Mor Weiss

Sapienza, University of Rome, Italy
MIT, Boston University, USA
Tsinghua University, China
University of Bristol, UK
IDC Herzliya, Israel

Additional Reviewers

Ittai Abraham Vivek Arte Paulo S. L. M. Barreto James Bartusek Shweta Agrawal Gilad Asharov Gorjan Alagic Tomer Ashur Carsten Baum Navid Alamati Nuttapong Attrapadung Gabrielle Beck Younes Talibi Alaoui Benedikt Auerbach Amos Beimel Martin Albrecht Roberto Avanzi Sonia Belaid

Joel Alwen Saikrishna Fabrice Benhamouda

Prabhanjan Ananth Badrinarayanan Pauline Bert
Elena Andreeva Josep Balasch Rishabh Bhadauria
Benny Applebaum Foteini Baldimtsi Olivier Blazy
Marcel Armour Marshall Ball Jeremiah Blocki
Gal Arnon Achiya Bar-On Jonathan Bootle

Cecilia Boschini
Katharina Boudgoust
Florian Bourse
Elette Boyle
Jacqueline Brendel
Anne Broadbent
Wouter Castryck
Andrea Cerulli
Yilei Chen
Nai-Hui Chia
Ilaria Chillotti
Arka Rai Choudhuri
Michele Ciampi
Benoit Cogliati
Ran Cohen

Sandro Coretti Craig Costello Geoffroy Couteau Jan Czajkowski Dana Dachaman-Soled

Wei Dai

Anders Dalskov Hannah Davis Akshay Degwekar Ioannis Demertzis

Patrick Derbez David Derler Itai Dinur

Mario Di Raimondo Benjamin Dowling Minxin Du Léo Ducas

Yfke Dulek Francois Dupressoir Frédéric Dupuis Stefan Dziembowski Gautier Eberhart

Christoph Egger

Maria Eichlseder
Daniel Escudero
Antonio Faonio
Franz Aguirre Farro
Pooya Farshim
Omar Fawzi

Katharina Fech Ben Fisch Marc Fischlin Emmanuel Fouotsa Danilo Francati Daniele Friolo Ariel Gabizon Tommaso Gagliardoni

Steven Galbraith
Chaya Ganesh
Lydia Garms
Romain Gay
Ran Gelles
Adela Georgescu

David Gerault Essam Ghadafi Satrajit Ghosh

Federico Giacon

Aarushi Goel

Junqing Gong Alonso Gonzalez Rishab Goyal Vipul Goyal Nicola Greco Daniel Grosse Zichen Gui

Tim Güneysu Chethan Kamath Hosdurg Mohammad Hajiabadi Lucjan Hanzlik Patrick Harasser Carmit Hazay

Julia Hesse Minki Hhan Kuan-Yi Ho Justin Holmgren Akinori Hosoyamada

Patrick Hough
James Howe
Pavel Hubácek
Shih-Han Hung
Kathrin Hövelmanns
Takanori Isobe
Mitsugu Iwamoto
Malika Izabachène

Malika Izabachène Joseph Jaeger Christian Janson Dirmanto Jap Stas Jarecki Zhengzhong Jin Charanjit Jutla Guillaume Kaim Mustafa Kairallah Yael Kalai Chethan Kamath Marc Kaplan Shuichi Katsumata

Shinagawa Kazumasa

Dmitry Khovratovich Ryo Kikuchi Sam Kim

Mojtaba Khalili

Elena Kirshanova Fuyuki Kitagawa Susumu Kiyoshima Karen Klein Michael Klooss Kamil Kluczniak Markulf Kohlweiss Ilan Komargodski

Venkata Koppula Evgenios Kornaropoulos

Takeshi Koshiba Luke Kowalczyk Stephan Krenn Mukul Kulkarni Ranjit Kumaresan Gijs Van Laer Russell W. F. Lai Thalia Laing Changmin Lee Eysa Lee

Moon Sung Lee
Tancrède Lepoint
Jyun-Jie Liao
Han-Hsuan Lin
Huijia (Rachel) Lin
Helger Lipmaa
Qipeng Liu
Tianren Liu
Alex Lombardi
Patrick Longa
Julian Loss

Atul Luykx

Julio López Fermi Ma Jack P. K. Ma Bernardo Magri Mohammad Mahmoody

Christian Majenz Hemanta Maji Giulio Malavolta Mary Maller

Nathan Manohar Peter Manohar Daniel Masny Takahiro Matsuda Alexander May

Sogol Mazaheri Jeremias Mechler

Simon-Philipp Merz Peihan Miao Romy Minko Takaaki Mizuki Amir Moradi Kirill Morozov Travis Morrison Nicky Mouha Tamer Mour

Pratyay Mukherjee Jörn Müller-Quade Kartik Nayak Gregory Neven Ka-Lok Ng

Ruth Ng

Ngoc Khanh Nguyen Ventzislav Nikov

Ariel Nof

Jiaxin Pan

Sai Lakshmi Bhavana

Obbattu
Maciej Obremski
Tobias Oder
Sabine Oechsner
Wakaha Ogata
Miyako Ohkubo
Cristina Onete
Claudio Orlandi
Emmanuela Orsini
Carles Padro

Lorenz Panny

Dimitris Papadopoulos Anat Paskin-Cherniavsky Christopher Patton

Alice Pellet-Mary
Zack Pepin
Jeroen Pijnenburg

Oxana Poburinnaya Antigoni Polychroniadou

Bart Preneel Ben Pring

Emmanuel Prouff Chen Qian

Luowen Qian Willy Quach

Srinivasan Raghuraman

Adrián Ranea
Divya Ravi
Vincent Rijmen
Peter Rindal
Felix Rohrbach
Razvan Rosie
Dragos Rotaru
Ron Rothblum
Arnab Roy

Paul Rösler Luisa Siniscalchi Mohamed Sabt Rajeev Anand Sahu Cyprien de Saint Guilhem

Kazuo Sakiyama Pratik Sarkar Pascal Sasdrich Alessandra Scafuro Falk Schellenberg

Thomas Schneider Tobias Schneider

Jacob Schuldt Gregor Seiler Sruthi Sekar Karn Seth

Yannick Seurin Aria Shahverdi

Abhishek Shetty Sina Shiehian Javier Silva Siang Meng Sim
Mark Simkin
Luisa Siniscalchi
Fang Song
Pratik Soni
Katerina Sotiraki
Nicholas Spooner
Caleb Springer

Akshayaram Srinivasan François-Xavier Standaert

Douglas Stebila Damien Stehlé Ron Steinfeld

Noah

Stephens-Davidowitz Christoph Striecks Patrick Struck Banik Subhadeep Gelo Noel Tabia Stefano Tessaro Sri Arayinda Krishnan

Thyagarajan
Mehdi Tibouchi
Elmar W. Tischhauser
Yosuke Todo

Junichi Tomida
Patrick Towa
Monika Trimoska
Itay Tsabary
Rotem Tsabary
Sulamithe Tsakou
Ida Tucker

Dominique Unruh Bogdan Ursu

Vinod Vaikuntanathan

Kerem Varici Prashant Vasudevan

Muthu

Venkitasubramaniam Fernando Virdia Madars Virza Ivan Visconti

Satyanarayana Vusirikala

Riad Wahby Adrian Waller Alexandre Wallet Michael Walter Haoyang Wang Jiafan Wang Meigin Wang Xiuhua Wang Yuyu Wang Gaven Watson Hoeteck Wee Weigiang Wen

Harry W. H. Wong Tim Wood Joanne Woodage Huangting Wu Keita Xagawa Shota Yamada Takashi Yamakawa Avishay Yanai Kenji Yasunaga

Kevin Yeo Eylon Yogev Yu Yu Mark Zhandry Jiapeng Zhang Yupeng Zhang Yongjun Zhao Yu Zheng

Sponsors

PlatON

Contents - Part II

MPC Communication Complexity	
The Communication Complexity of Threshold Private Set Intersection Satrajit Ghosh and Mark Simkin	3
Adaptively Secure MPC with Sublinear Communication Complexity Ran Cohen, Abhi Shelat, and Daniel Wichs	30
Communication Lower Bounds for Statistically Secure MPC, With or Without Preprocessing	61
Communication-Efficient Unconditional MPC with Guaranteed Output Delivery	85
Symmetric Cryptanalysis	
Efficient Collision Attack Frameworks for RIPEMD-160	117
Improving Attacks on Round-Reduced Speck32/64 Using Deep Learning Aron Gohr	150
Correlation of Quadratic Boolean Functions: Cryptanalysis of All Versions of Full MORUS	180
Low-Memory Attacks Against Two-Round Even-Mansour Using the 3-XOR Problem	210
(Post) Quantum Cryptography	
How to Record Quantum Queries, and Applications to Quantum Indifferentiability	239
Quantum Security Proofs Using Semi-classical Oracles	269

Quantum Indistinguishability of Random Sponges Jan Czajkowski, Andreas Hülsing, and Christian Schaffner	296
Revisiting Post-quantum Fiat-Shamir	326
Security of the Fiat-Shamir Transformation in the Quantum Random-Oracle Model	356
Leakage Resilience	
Unconditionally Secure Computation Against Low-Complexity Leakage Andrej Bogdanov, Yuval Ishai, and Akshayaram Srinivasan	387
Tight Leakage-Resilient CCA-Security from Quasi-Adaptive Hash Proof System	417
Shuai Han, Shengli Liu, Lin Lyu, and Dawu Gu	
Non-malleable Secret Sharing in the Computational Setting: Adaptive Tampering, Noisy-Leakage Resilience, and Improved Rate Antonio Faonio and Daniele Venturi	448
Leakage Resilient Secret Sharing and Applications	480
Stronger Leakage-Resilient and Non-Malleable Secret Sharing Schemes for General Access Structures	510
Memory Hard Functions and Privacy Amplification	
Memory-Hard Functions from Cryptographic Primitives	543
Data-Independent Memory Hard Functions: New Attacks and Stronger Constructions Jeremiah Blocki, Ben Harsha, Siteng Kang, Seunghoon Lee, Lu Xing, and Samson Zhou	573
Simultaneous Amplification: The Case of Non-interactive Zero-Knowledge Vipul Goyal, Aayush Jain, and Amit Sahai	608
The Privacy Blanket of the Shuffle Model	638

Venkata Koppula and Brent Waters Match Me if You Can: Matchmaking Encryption and Its Applications. 70 Giuseppe Ateniese, Danilo Francati, David Nuñez, and Daniele Venturi ABE for DFA from k-Lin 73 Junqing Gong, Brent Waters, and Hoeteck Wee Attribute Based Encryption (and more) for Nondeterministic Finite Automata from LWE 76 Shweta Agrawal, Monosij Maitra, and Shota Yamada Foundations The Distinction Between Fixed and Random Generators in Group-Based Assumptions 80 James Bartusek, Fermi Ma, and Mark Zhandry	Attribute Based Encryption	
Giuseppe Ateniese, Danilo Francati, David Nuñez, and Daniele Venturi ABE for DFA from k-Lin	Encryption and Predicate Encryption	671
Junqing Gong, Brent Waters, and Hoeteck Wee Attribute Based Encryption (and more) for Nondeterministic Finite Automata from LWE	· · · · · · · · · · · · · · · · · · ·	701
Finite Automata from LWE		732
The Distinction Between Fixed and Random Generators in Group-Based Assumptions	Finite Automata from LWE	765
in Group-Based Assumptions	Foundations	
	in Group-Based Assumptions	801
		831