Skip to main content

How to Record Quantum Queries, and Applications to Quantum Indifferentiability

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2019 (CRYPTO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11693))

Included in the following conference series:

Abstract

The quantum random oracle model (QROM) has become the standard model in which to prove the post-quantum security of random-oracle-based constructions. Unfortunately, none of the known proof techniques allow the reduction to record information about the adversary’s queries, a crucial feature of many classical ROM proofs, including all proofs of indifferentiability for hash function domain extension.

In this work, we give a new QROM proof technique that overcomes this “recording barrier”. We do so by giving a new “compressed oracle” which allows for efficient on-the-fly simulation of random oracles, roughly analogous to the usual classical simulation. We then use this new technique to give the first proof of quantum indifferentiability for the Merkle-Damgård domain extender for hash functions. We also give a proof of security for the Fujisaki-Okamoto transformation; previous proofs required modifying the scheme to include an additional hash term. Given the threat posed by quantum computers and the push toward quantum-resistant cryptosystems, our work represents an important tool for efficient post-quantum cryptosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The one exception we are aware of is Unruh’s adaptive programming [Unr15]. This proof does change the oracle adaptively, but only inputs for which adversary’s queries have only negligible “weight”. Thus, the change is not detectable. The following discussion also applies to Unruh’s technique.

  2. 2.

    We note that if the underlying building blocks are strengthened, Fiat-Shamir was proven secure by Unruh [Unr16].

  3. 3.

    and the square root comes from the fact that the norm of the sum of q unit vectors of disjoint support is \(\sqrt{q}\).

References

  1. Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element distinctness problems. J. ACM 51(4), 595–605 (2004)

    Article  MathSciNet  Google Scholar 

  2. Anand, M.V., Targhi, E.E., Tabia, G.N., Unruh, D.: Post-quantum security of the CBC, CFB, OFB, CTR, and XTS modes of operation. Cryptology ePrint Archive, Report 2016/197 (2016). http://eprint.iacr.org/2016/197

  3. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997)

    Article  MathSciNet  Google Scholar 

  4. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3

    Chapter  MATH  Google Scholar 

  5. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 163–169. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054319

    Chapter  Google Scholar 

  6. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS 93, pp. 62–73. ACM Press, November 1993

    Google Scholar 

  7. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_21

    Chapter  Google Scholar 

  8. Czajkowski, J., Bruinderink, L.G., Hülsing, A., Schaffner, C., Unruh, D.: Post-quantum security of the sponge construction. Cryptology ePrint Archive, Report 2017/771 (2017). http://eprint.iacr.org/2017/771

  9. Cabarcas, D., Demirel, D., Göpfert, F., Lancrenon, J., Wunderer, T.: An unconditionally hiding and long-term binding post-quantum commitment scheme. Cryptology ePrint Archive, Report 2015/628 (2015). http://eprint.iacr.org/2015/628

  10. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-key primitives. Cryptology ePrint Archive, Report 2017/279 (2017). http://eprint.iacr.org/2017/279

  11. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård revisited: how to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_26

    Chapter  Google Scholar 

  12. Dagdelen, Ö., Fischlin, M., Gagliardoni, T.: The Fiat–Shamir transformation in a quantum world. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 62–81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_4

    Chapter  MATH  Google Scholar 

  13. Eaton, E.: Leighton-Micali hash-based signatures in the quantum random-oracle model. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 263–280. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-9_13

    Chapter  Google Scholar 

  14. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_34

    Chapter  Google Scholar 

  15. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: 28th ACM STOC, pp. 212–219. ACM Press, May 1996

    Google Scholar 

  16. IBM: IBM announces advances to IBM quantum systems and ecosystem (2017). https://www-03.ibm.com/press/us/en/pressrelease/53374.wss

  17. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key encapsulation mechanism in the quantum random oracle model, revisited. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 96–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_4

    Chapter  Google Scholar 

  18. Mittelbach, A.: Salvaging indifferentiability in a multi-stage setting. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 603–621. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_33

    Chapter  MATH  Google Scholar 

  19. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reductions, and applications to the random oracle methodology. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_2

    Chapter  Google Scholar 

  20. NIST: Candidate quantum-resistant cryptographic algorithms publicly available (2017). https://www.nist.gov/news-events/news/2017/12/candidate-quantum-resistant-cryptographic-algorithms-publicly-available

  21. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: limitations of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_27

    Chapter  Google Scholar 

  22. Song, F.: A note on quantum security for post-quantum cryptography. Cryptology ePrint Archive, Report 2014/709 (2014). http://eprint.iacr.org/2014/709

  23. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and OAEP transforms. In: Hirt, M., Smith, A.D. (eds.) TCC 2016. LNCS, vol. 9986, pp. 192–216. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_8

    Chapter  MATH  Google Scholar 

  24. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_25

    Chapter  MATH  Google Scholar 

  25. Unruh, D.: Collapse-binding quantum commitments without random oracles. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 166–195. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_6

    Chapter  Google Scholar 

  26. Yoo, Y., Azarderakhsh, R., Jalali, A., Jao, D., Soukharev, V.: A post-quantum digital signature scheme based on supersingular isogenies. Cryptology ePrint Archive, Report 2017/186 (2017). http://eprint.iacr.org/2017/186

  27. Zhandry, M.: How to construct quantum random functions. In: 53rd FOCS, pp. 679–687. IEEE Computer Society Press, October 2012

    Google Scholar 

  28. Zhandry, M.: Secure identity-based encryption in the quantum random oracle model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 758–775. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_44

    Chapter  MATH  Google Scholar 

  29. Zhandry, M.: A note on the quantum collision and set equality problems. Quant. Inf. Comput. 15(7 & 8) (2015)

    Google Scholar 

  30. Zhandry, M.: How to record quantum queries, and applications to quantum indifferentiability. Cryptology ePrint Archive, Report 2018/276 (2018). https://eprint.iacr.org/2018/276

Download references

Acknowledgements

This work is supported in part by NSF and DARPA. Opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of NSF or DARPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Zhandry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhandry, M. (2019). How to Record Quantum Queries, and Applications to Quantum Indifferentiability. In: Boldyreva, A., Micciancio, D. (eds) Advances in Cryptology – CRYPTO 2019. CRYPTO 2019. Lecture Notes in Computer Science(), vol 11693. Springer, Cham. https://doi.org/10.1007/978-3-030-26951-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26951-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26950-0

  • Online ISBN: 978-3-030-26951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics