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Abstract. It is well-known that irreversible MCMC algorithms con-
verge faster to their stationary distributions than reversible ones. Using
the special geometric structure of Lie groups G and dissipation fields
compatible with the symplectic structure, we construct an irreversible
HMC-like MCMC algorithm on G, where we first update the momen-
tum by solving an OU process on the corresponding Lie algebra g, and
then approximate the Hamiltonian system on G × g with a reversible
symplectic integrator followed by a Metropolis-Hastings correction step.
In particular, when the OU process is simulated over sufficiently long
times, we recover HMC as a special case. We illustrate this algorithm
numerically using the example G = SO(3).
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1 Introduction

In this work, we construct an irreversible MCMC algorithm on Lie groups, which
generalises the standard Hamiltonian Monte Carlo (HMC) algorithm on Rn. The
HMC method [14] generates samples from a probability density (with respect to
an appropriate reference measure) known up to a constant factor by generating
proposals using Hamiltonian mechanics, which is approximated by a reversible
symplectic numerical integrator and followed by a Metropolis-Hastings step to
correct for the bias introduced during the numerical approximations. The re-
sulting time-homogeneous Markov chain is thus reversible, and allow distant
proposals to be accepted with high probability, which decreases the correlations
between samples (for a basic reference on HMC see [18], and for a geometric
description see [4, 6]). However, it is well-known that ergodic irreversible diffu-
sions converge faster to their target distributions [15,21], and several irreversible
MCMC algorithms based on Langevin dynamics have been proposed [19,20].

From a mechanical point of view, diffusions on Lie groups are important
since they form the configuration space of many interesting systems, such as the
free rigid body. For example in [10] Euler-Poincaré reduction of group invariant
symplectic diffusions on Lie groups are considered in view of deriving dissipative
equations from a variational principle, and in [1] Langevin systems on coadjoint
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orbits are constructed by adding noise and dissipation to Hamiltonian systems
on Lie groups. The phase transitions of this system were analysed using a sam-
pling method [2]. In lattice gauge theory one typically uses the HMC algorithm
for semi-simple compact Lie groups which was originally presented in [16] and
extended to arbitrary Lie groups in [3], see also [11, 12, 17]. In [5], it was shown
how to construct HMC on homogeneous manifolds using symplectic reduction,
which includes sampling on Lie groups as a special case.

To construct an irreversible algorithm on Lie groups, we first extend Langevin
dynamics to general symplectic manifolds M based on Bismut’s symplectic dif-
fusion process [7]. Our generalised Langevin dynamics with multiplicative noise
and nonlinear dissipation has the Gibbs measure as the invariant measure, which
allows us to design MCMC algorithms that sample from a Lie group G when we
take M = T ∗G. In our Langevin system the irreversible component is deter-
mined by Hamiltonian vector fields which are compatible with the symplectic
structure, thus avoiding the appearance of divergence terms associated to the
volume distortion. We are then free to choose the noise-generating Hamiltonians
to best suit the target distribution. Choosing Hamiltonians that only depend
on position allows us to proceed with a Strang splitting of the dynamics into a
position-dependent OU process in the fibres which can be solved exactly, and a
Hamiltonian part which is approximated using a leapfrog scheme, followed by a
Metropolis-Hastings acceptance/rejection step in a similar fashion to [8, 19, 20].
Ideally one wants to choose these Hamiltonians to achieve the fastest convergence
to stationarity.

On a general manifold, it would be necessary to introduce local coordinates
in order to solve the OU process on the fibres, making it difficult to implement.
However, since our base manifold is a Lie group, the Maurer-Cartan form defines
an isomorphism between the cotangent bundle T ∗G and the trivial bundle G×g∗,
which, given an inner-product on g, may further be identified with G × g. As a
result, one may pull back the OU process on T ∗g G to an OU process on g for
any g ∈ G, thus avoiding the problem of having to choose appropriate charts.
Hence on Lie groups, we obtain a practical irreversible MCMC algorithm which
generalises the Rn-version of the irreversible algorithm considered in [19,20].

Finally, we simulate this algorithm in the special case G = SO(3) and per-
form a Maximum Mean Discrepancy (MMD) test to show that on average, the
irreversible algorithm converges faster to the stationary measure than the cor-
responding reversible HMC on SO(3).

2 Diffusions on Symplectic Manifolds

We consider diffusion processes on symplectic manifolds (M, ω), where we have
a natural volume form ωn, and define the canonical Poisson bracket {g, f} :=
ω(Xf , Xg) = Xgf , where Xg is the Hamiltonian vector field associated to the
Hamiltonian g : M → R, i.e. dg = ιXgω. Given arbitrary functions H and Hi
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for i = 1, . . . ,m on M, we consider the SDE

dZt =
(
XH(Zt)−

β

2

m∑
i=1

{Hi, H}XHi(Zt)
)

dt+

m∑
i=1

XHi(Zt) ◦ dW i
t , (1)

which has the generator, or forward Kolmogorov operator

Lf = −{f,H} − β

2

m∑
i=1

{H,Hi}{f,Hi}+
1

2

m∑
i=1

{{f,Hi}, Hi} . (2)

To show that the Gibbs measure is an invariant measure for (1), we will need
the following lemma:

Lemma 1. For a symplectic manifold (M, ω) and two functions f, g ∈ C∞(M)
such that either ∂M = ∅ or g|∂M = 0, we have the following identity∫

M
{f, g}ωn = 0 .

For the proof, see [13], Section 4.3. Hence (1) enables us to build MCMC algo-
rithms on any symplectic manifold, and in particular the cotangent bundle of
Lie groups, that converge to the Gibbs measure:

Theorem 1. Given a symplectic manifold (M, ω) without boundary, equation
(1) onM has the Gibbs measure

P∞(z) = p∞ω
n :=

1

Z
e−βH(z)ωn, Z =

∫
M
e−βH(z)ωn

as its stationary measure for any choice of Hi :M→ R where i = 1, . . . ,m.

Proof. Using the Leibniz rule {fg, h} = f{g, h}+ g{f, h}, we have

g{f,Hi}{H,Hi} = {gf,Hi}{H,Hi} − f{g,Hi}{H,Hi}
= · · · = {gf{H,Hi}, Hi} − f{g{H,Hi}, Hi}

and similarly

g{{f,Hi}, Hi} = {g{f,Hi}, Hi} − {f{g,Hi}, Hi}+ f{{g,Hi}, Hi}.

Hence one can compute the L2(M, ωn)-adjoint of the operator L as follows∫
M
g(Lf)ωn =

∫
M

g

(
−{f,H} − β

2

m∑
i=1

{f,Hi}{H,Hi}+
1

2

m∑
i=1

{{f,Hi}, Hi}

)
ωn

=

∫
M

(
−{fg,H} − β

2
{fg{H,Hi}, Hi}+

1

2
({g{f,Hi}, Hi} − {f{g,Hi}, Hi})

)
ωn

+

∫
M

f

(
{g,H}+

β

2
{g{H,Hi}, Hi}+

1

2
{{g,Hi}, Hi}

)
ωn

=

∫
M
f

(
{g,H}+

β

2
{g{H,Hi}, Hi}+

1

2
{{g,Hi}, Hi}

)
ωn =

∫
M
f(L∗g)ωn,
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where we have used Lemma 1 to integrate the Poisson brackets to 0. Hence, we
obtain the Fokker-Planck operator

L∗g = {g,H}+
β

2

m∑
i=1

{g{H,Hi}, Hi}+
1

2

m∑
i=1

{{g,Hi}, Hi}.

Now, by the derivation property of the Poisson bracket, {f◦g, h} = f ′◦g{g, h}
and noting that p′∞(H) = −Z−1βe−βH = −βp∞(H), one can check that

L∗p∞ = p′∞(H){H,H}+β

2

m∑
i=1

{p∞(H){H,Hi}, Hi}

− β

2

m∑
i=1

{p∞(H){H,Hi}, Hi} = 0.

Therefore P∞(z) = p∞(z)ωn is indeed an invariant measure for (1).

If M = T ∗Q is the cotangent bundle of a manifold without boundary Q, we
define the marginal measure P1

∞ on Q by∫
A

P1
∞ =

∫
T∗A

ι∗P∞, (3)

for any measurable set A ⊂ Q, where ι : T ∗A → T ∗Q is the inclusion map. In
addition, if (Q, γ) is a Riemannian manifold, we can consider the Hamiltonian
function H(q, p) = 1

2γq(p, p)+V (q), for (q, p) ∈ T ∗Q, and the marginal invariant
measure P1

∞(dq) of the process (1) is simply

P1
∞(dq) =

1

Z1
e−V (q)

√
|g|dq, Z1 =

∫
Q
e−V (q)

√
|g|dq,

where
√
|g|dq is the Riemannian volume form.

The MCMC algorithm which we will derive in section §3 is based on a Strang
splitting of the dynamics (1) into a Hamiltonian part and a Langevin part.
Hereafter, we identify T ∗Q with TQ through the metric and just consider the
dynamics on TQ instead of T ∗Q.

3 Irreversible Langevin MCMC on Lie Groups

Consider a n dimensional Lie group G and let ei, θ
i, i = 1, . . . , n be an or-

thonormal basis of left-invariant vector fields and dual one-forms respectively.
We consider H = V ◦ π + T : TG → R, where T is the kinetic energy associated
to a bi-invariant metric on G and V ∝ logχ : G → R is the potential energy,
where χ is the distribution we want to sample from on G. We let vi : TG → R
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be the fibre coordinate functions with respect to the left-invariant vector fields,
vi(g, ug) := θig(ug).

Vector fields tangent to TG (i.e., elements of Γ (TTG)) can be expanded in
terms of left-invariant vector fields ei and the fibre-coordinate vector fields ∂vi ,
(i.e., Γ (TTG) ∼= Γ (TG⊕Tg)). We consider noise Hamiltonians that depend only
on position, Hi = Ui ◦ π where Ui : G → R, so the corresponding Hamiltonian
vector fields can be written as XHi = −ej(Ui)∂vj , (see [3]). Hence the stochastic
process (1) on TG can be split up into a Langevin part

dZt =
β

2

m∑
i=1

XH(Hi)XHi(Zt)dt+

m∑
i=1

XHi(Zt) ◦ dW i
t ,

= −β
2

m∑
i=1

vkek(Ui)ej(Ui)∂vj (Zt)dt−
m∑
i=1

ej(Ui)∂vj (Zt) ◦ dW i
t . (4)

and a Hamiltonian part

dZt
dt

= XH(Zt). (5)

Note the geodesics are given by the one-parameter subgroups, with Hamil-
tonian vector field XT = vkek. Since XHi only has components in the fibre
direction ∂vi (i.e., it has no ei components along G) the diffusion starting at any
point (g, v) ∈ TG remains in TgG, i.e., with the same base point g. When G = Rn
and we use the standard kinetic energy T = 1

2‖v‖
2
Rn , then vector fields become

gradients, i.e. ej = ∂qj , and equation (4) becomes the space dependent Langevin
equation for (q, v) ∈ TRn,

q̇ = 0, dvt = −β
2
∇qUi(q)∇qUi(q)T vtdt−∇qUi(q) ◦ dW i

t . (6)

Now let ξi := ei(1) be a basis of the Lie algebra g, where 1 is the identity.
Then ei(g) = ∂1Lgξ and we can identify TG with G × g through the relation
(g, viei(g)) ∼ (g, viξi). In other words, we may now think of vi as the Lie algebra
coordinate functions vi : G×g→ R with vi(g, u) = θi1(u), and since g is a vector
space, we can identify ∂vi ∼ ξi and write

XHi(g, v) = −ej |g(Ui)ξj =: σji(g)ξj . (7)

for i = 1, . . . ,m and j = 1, . . . , n. For matrix Lie groups, this becomes

XHi(g, v) = −Tr
(
∇UTi gξj

)
ξj = σji(g)ξj , (8)

where (∇Ui)ab := ∂xabUi, where xab are the matrix coordinates of g ∈ G. The
Langevin equation (4) can then be written as

ġ = 0, dvt = −β
2

(σ(g)σ(g)T )jkv
k
t ξjdt+ σji(g)ξjdW

i
t , (9)
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and if we identify g ∼ Rn, viξi ∼ v ∈ Rn, we get a standard OU process on Rn

dvt = −β
2
σσTvtdt+ σdWt , (10)

for the vector-valued Wiener process Wt = (W 1
t , . . . ,W

m
t ) ∈ Rm. Note that

the noise term can be interpreted as an Itô integral since the diffusion coeffi-
cient σ does not depend on v. We can solve this Langevin equation explicitly
if the matrix D = σσT is invertible. This is the case if the vectors ∇Ui form
an orthonormal basis of Rn, or more generally if they satisfy the Hörmander
condition. The explicit solution is then given by

vt+h = e−
β
2Dhvt + σ

∫ t+h

t

e−
β
2D(t+h−s)dWs , (11)

which has the transition probability

p(v0, v) =
1

(2π)n/2|detΣh|
exp

(
−1

2

∥∥∥v − e− β2Dhv0∥∥∥2
Σ−1
h

)
,

where Σh =
1

β

(
Id− e−βDh

)
.

(12)

3.1 MCMC algorithm on Lie groups

From the Langevin system considered in the previous section, we can construct

the following MCMC algorithm to sample from the distribution χ := e−
β
2 V on

G. Starting from (g0, v0) ∈ TG, we iterate the following

1. Solve equation (9) exactly until time h by sampling

v∗ ' N
(
e−

β
2Dhv0, Σh

)
(13)

to obtain (ḡ0, v̄0) = (g0, v
∗);

2. Approximate the Hamiltonian system (5) using N Leapfrog trajectories with
step size δ > 0. Starting at (ḡ0, v̄0) = (g0, v

∗):

For k = 0, . . . , N − 1: 3

v̄k+ 1
2

= v̄k −
δ

2
Tr
(
∂xV

T ḡkξi
)
ξi

ḡk+1 = ḡk exp
(
δ v̄k+ 1

2

)
v̄k+1 = v̄k+ 1

2
− δ

2
Tr
(
∂xV

T ḡk+1ξi
)
ξi

to obtain (ḡN , v̄N ). The time step δ and number of steps N are to be tuned
appropriately by the users.

3 For a non-matrix group, simply replace Tr
(
∂xV

T ḡkξi
)

with ei|g(V ).
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3. Accept or reject the proposal by a Metropolis-Hastings step. We accept the
proposal (ḡN , v̄N ) with probability

α = min {1, exp (−H(ḡN , v̄N ) +H(ḡ0, v̄0))} ,

and set (g1, v1) = (ḡN , v̄N ). On the other hand, if the proposal is rejected,
we set (g1, v1) = (ḡ0,−v̄0).

Notice also that in the limit h → ∞, this algorithm become the standard
HMC algorithm, which is reversible, but for finite h, the algorithm is irreversible
(see [19] for a detailed discussion).

4 Example on SO(3)

As an example we will pick the rotation group G = SO(3), where the Lie algebra
so(3) consists of 3× 3 anti-symmetric matrices so that the kinetic energy on the
Lie algebra is T (v) = 1

2Tr(vT v), for v ∈ so(3). The potentials on SO(3) will be
defined by functions V,Ui : R3×3 → R on matrices. We then pick the potential
to be of the form V (g) = eαTr(g) and isotropic noise with

Ui(g) = εTr(e−ξig) for span(ξi) = so(3) . (14)

We then obtain samples gt on SO(3), which we can project onto the sphere by
simply letting the group act on a vector z = (0, 0, 1), to get xt = gtz, see panel
(a) of figure 1. From these samples gt, we can also estimate the convergence rate
of the MCMC algorithm by computing the maximum mean discrepancy (MMD)
between the set of first N samples and the whole sequence, using the values
on the diagonal of the matrices gt. We see that in figure 1, small values for h
give MCMC algorithms with a faster convergence rate than the HMC limit, i.e.,
h → ∞. This is a direct consequence from the irreversibility of the algorithm,
as explained in [15, 21]. Even if a faster convergence is desirable, one has to
ensure that the correct distribution is sampled, and if h is taken too small, the
algorithm will be close to a pure Hamiltonian dynamics, with additional reversal
steps v → −v when the proposed state is rejected. We observe this effect already
for h = 0.01 where the convergence is as fast as h = 0.1 for the first steps of the
chain, but then later slows down, as the distribution is not sampled correctly.
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(a) MCMC samples

0 25 50 75 100 125 150 175 200
MCMC steps

10−3

10−2

10−1

M
M
D

h=0.01
h=0.1
h=1.0
h=10.0
h=100.0
HMC

(b) Convergence rate

0 100 200 300 400 500
lag

0.0

0.2

0.4

0.6

0.8

au
to

co
rre

la
tio

n

h = 0.01
h = 0.1
h = 1.0
h = 10.0
h = 100.0
HMC

(c) Autocorrelations

Fig. 1. This figure illustrates the irreversible MCMC algorithm on Lie group with
G = SO(3). For each run, we sampled 5000 samples, shown in panel (a), along with the
first one it red and the next 50 in green. We ran several chains with several parameters
h, corresponding to the integration time of the Langevin dynamics. For large h, the
MCMC algorithm converges to the HMC algorithm, also displayed in black. Each line in
panel (b) and (c) are averages over 20 chains with the same parameters. For the leapfrog
integrator we use 5 timesteps with a total time δ = 0.5. The MMD computation on G
has been run with Gaussian kernel of variance σ = 1.
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