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Abstract. This paper puts forth a new formulation and algorithm for the

elastic matching problem on unparametrized curves and surfaces. Our ap-

proach combines the frameworks of square root normal fields and varifold fi-
delity metrics into a novel framework, which has several potential advantages

over previous works. First, our variational formulation allows us to minimize

over reparametrizations without discretizing the reparametrization group. Sec-
ond, the objective function and gradient are easy to implement and efficient to

evaluate numerically. Third, the initial and target surface may have different

samplings and even different topologies. Fourth, texture can be incorporated
as additional information in the matching term similarly to the fshape frame-

work. We demonstrate the usefulness of this approach with several numerical
examples of curves and surfaces.

1. Introduction

1.1. Context. The statistical analysis of datasets of curves and surfaces is an active
research field with many applications in e.g. computer vision, robotics, and medical
imaging; see [24, 4, 20] and references therein. A recurring and fundamental task
is finding optimal point correspondences between given shapes (i.e., the matching
or registration problem), where optimality is typically expressed in terms of an
elastic deformation energy. Solving the elastic matching problem in a numerically
efficient way, which scales well to high-dimensional data encountered in real-world
applications, remains a major challenge to date.

1.2. Relation to previous work. This paper draws on two lines of work: square
root normal fields (SRNFs) [19, 14, 11, 12], which allow one to efficiently calculate
elastic distances between parametrized shapes, and varifold distances [22, 9, 7,
18, 13], which are distances between unparametrized shapes without any elastic
interpretation. For each of these frameworks, efficient numerical implementations
have been developed.

1.3. Contribution. We propose a new algorithm which combines SRNFs with
varifold distances and inherits many advantages of both approaches. The key idea
is to use varifold distances to relax the terminal constraint in the elastic matching
problem. This bypasses the discretization of the reparametrization group, thereby
eliminating the main computational burden in previous implementations of SRNF-
based elastic shape matching. The resulting optimization problem is easy to im-
plement and yields good results on some preliminary experiments on curves and
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surfaces. Moreover, the varifold distances allow one to match shapes with differ-
ent meshes and even different topologies and to use texture information as in the
fshape framework.

2. Shape analysis of curves and surfaces

2.1. Elastic shape analysis. Elastic shape analysis operates in a Riemannian
framework where infinitesimal shape deformations are measured by a Riemannian
metric, which is often related to an elastic (or plastic) deformation energy; see
the surveys [4, 12]. We consider parameterized shapes as elements of the Fréchet
manifold Imm(M,Rd) of immersed hypersurfaces of a (d− 1)-dimensional compact
manifold M into Rd. The corresponding space of unparameterized shapes is the
quotient space Bi(M,Rd) = Imm(M,Rd)/Diff(M), whose elements are denoted by
[f ] = {f ◦ ϕ;ϕ ∈ Diff(M)}. Given a Diff(M)-invariant weak Riemannian metric
G on Imm(M,Rd), one defines a pseudo-distance between any two immersions
f0, f1 ∈ Imm(M,Rd) and their equivalence classes [f0], [f1] ∈ Bi(M,Rd) by

distImm(f0, f1)2 = inf
f∈C∞([0,1],Imm(M,Rd))

f(0)=f0,f(1)=f1

∫ 1

0

Gf (∂tf, ∂tf)dt,(1)

distBi([f0], [f1]) = inf
ϕ∈Diff(M)

distImm(f0, f1 ◦ ϕ).(2)

Symmetry of the pseudo-distance on Bi(M,Rd) follows from the invariance of the
metric G with respect to reparametrizations. Under suitable conditions on G the
pseudo-distance is a distance, i.e., it separates points in the shape space of curves
[17, 16] or surfaces [5].

From a numerical perspective, the challenge is to calculate the above distances
and the corresponding optimizers efficiently. This minimization can be solved nu-
merically by path straightening and geodesic shooting methods (see e.g. [10, 2]) or
as in the next section by exploiting isometries to simpler spaces.

2.2. Square root normal fields. Problem (1) simplifies considerably for certain
first order Sobolev metrics [23, 25, 19, 21, 14, 11, 3]. One class of such metrics is
defined using square root normal fields (SRNFs), which were introduced by Srivas-
tava e.a. [19, 14] for planar curves and later generalized to surfaces by Jermyn e.a.
[11]. The SRNF of an oriented immersed hypersurface f ∈ Imm(M,Rd) is defined
as ñf = nf vol

1/2
f , where nf is the unit normal field and vol

1/2
f the half density of f .

For example, the SRNF of a planar curve f ∈ Imm(S1,R2) is given in coordinates
θ ∈ S1 by ñf = ifθ‖fθ‖−1/2

R2 , where i denotes rotation by 90 degrees and coordinates
in subscripts denote derivatives. Similarly, the SRNF of a surface f ∈ Imm(S2,R3)
is given in coordinates (u, v) ∈ S2 as ñf = (fu × fv)‖fu × fv‖−1/2

R3 . In general, one
obtains an elastic pseudo-Riemannian metric on Imm(M,Rd) by setting

Gf (h, k) =

∫
M

〈D(f,h)ñf , D(f,k)ñf 〉Rd ,

where D(f,h)ñf denotes the directional derivative of ñf at f in the direction h. This
pseudo-Riemannian metric G is Diff(M)-invariant, and by construction the map
f 7→ ñf is a Riemannian isometry into the flat space of square integrable vector-
valued half densities. For curves one obtains a Riemannian metric by modding out
translations. For surfaces the situation is more complicated, as described in [11],
and the kernel of the pseudo-metric may be larger than only translations. The
metric belongs to the class of first order Sobolev metrics, which have been studied
in great detail [17, 16, 5].
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The advantage of this construction is that the Riemannian distance of G on
Imm(M,Rd) can be approximated efficiently as follows:

(3) distImm(f0, f1) ≈ ‖ñf0 − ñf1‖L2 .

Equality holds whenever the straight line between ñf0 and ñf1 is contained in the
range of the map f 7→ ñf . In general, equality holds up to first order for f0 close
to f1 because the map f 7→ ñf is a Riemannian isometry.

The approximate distance (3) descends to the quotient space Bi(M,R3) as de-
scribed in (2). However, (2) involves a minimization over the reparametrization
group, which is computationally costly. For curves this can be solved by dynamic
programming [19] or using an explicit formula [15]. For surfaces in spherical co-
ordinates, Jermyn e.a. [11] proposed to discretize the diffeomorphism group of the
two-dimensional sphere using spherical harmonics. This article puts forth an alter-
native method for minimization over the reparametrization group, which is based
on varifold distances.

2.3. Varifold distances. Geometric measure theory provides several embeddings
of shape spaces into Banach spaces of distributions [22, 9, 7, 18, 13] with corre-
sponding metrics. Varifold embeddings are one instance of this construction and
are defined as follows (cf. [13] for details). Given a reproducing kernel Hilbert
space W of real-valued functions on Rd × Sd−1, one associates to any immersion
f ∈ Imm(M,Rd) the varifold µf ∈W ∗ which satisfies

∀w ∈W : (µf |w)W∗,W =

∫
M

w(f(x), n(x)) volf (dx).

The map f 7→ µf is reparametrization-invariant and, under suitable assumptions
on the kernel of W , injective [13]. Thus, one obtains a well-defined distance on the
quotient space Bi(M,Rd) by defining for any two immersions f0, f1 ∈ Imm(M,Rd):

distVar([f0], [f1]) = ‖µf0 − µf1‖W∗ .

From a computational point of view, these distances have explicit expressions in
terms of the kernel function of W and are easy to implement for discrete curves
or surfaces. We will use such distances to relax the terminal constraint in the
boundary value problem for geodesics on shape space, as described next.

2.4. Combining SRNFs and varifold distances. Square root normal fields
and varifold distances can be combined in an efficient matching algorithm for un-
parametrized shapes. This idea has been previously used in combination with large
deformation models in [7, 13] and with H2 metrics on the space of curves in [1].
The boundary value problem (2) for geodesics on Bi(M,Rd) can be formulated as
the program

(4) minimize
f

dist(f0, f) subject to distVar([f ], [f1]) = 0.

Relaxation using a (large) Lagrange multiplier λ and approximation of the elastic
distance as in (3) yields

(5) minimize
f

‖ñf0 − ñf‖2L2 + λ distVar([f ], [f1])2.

This program has several advantages over previous alternative formulations of the
SRNF matching problem [19, 14, 11]. First, the objective function and its gradient
are easy to implement and can be computed efficiently. Second, the initial and tar-
get surface may have different discretizations and even different topologies. Third,
texture information can be incorporated into the varifold matching term similarly
to the fshape framework [8, 6].
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Figure 1. Distances and clusters produced by our algorithm are
comparable to state-of-the-art curve matching using dynamic pro-
gramming [19] when tested on curves in the Kimia database. Left:
our SRNF-varifold algorithm; right: dynamic programming; top:
distance-based multi-dimensional scaling; bottom: symmetrized
distance matrix.

3. Numerical implementation and results

3.1. Algorithm. Given a pair (f0, f1) of curves or surfaces, the program (5) looks
for a minimizer f with distBi

([f0], [f1]) = distImm(f0, f) and [f ] = [f1]. Thus,
the algorithm solves the registration problem and calculates the distance between
the unparametrized shapes [f0] and [f1]. Note that it does, however, not provide
a geodesic homotopy between these shapes. Such a homotopy can be obtained
from the linear homotopy between ñf0 and ñf1 by (approximate) inversion of the
SRNF map f 7→ ñf . For open curves this inversion is exact and easy to implement.
For closed curves, the range of the SRNF map is not convex, and an approximate
inverse has to be used [19]. For surfaces, this is a delicate issue [11], and to the
best of our knowledge there exists no publicly available implementation for general
triangulated surfaces.

3.2. Implementation. To implement the program (5) numerically, one has to
discretize the space of parametrized shapes. An advantage over [11] is that the
reparametrization group does not need to be discretized. Piecewise linear curves
and triangular meshes are suitable discretizations in our context, the reason being
that square root normal fields and kernel-based varifold distances extend naturally
to these spaces. The minimization is performed using an L-BFGS method. The
gradient of the discretized energy functional (5), which is needed by the L-BFGS
method, has an explicit form and can be implemented efficiently.
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Figure 2. Our algorithm can match shapes with different topolo-
gies. Left to right: geodesic interpolation (colored) between a sin-
gle circle and a pair of circles (black, dashed); top: small distance
between the pair of circles; bottom: small distance between the
pair of circles.

Figure 3. Elastic matching of curves with functional data. Left:
source and target curves with binary functional data in red/cyan.
Middle: matching using functional data. Right: purely geometrical
matching without functional data.

3.3. Curves. For curves, our algorithm is comparable to state of the art methods.
On the Kimia dataset1 it produces distances and clusters which are similar to those
based on dynamic programming, as shown in Fig 1. A nice feature of our algorithm,
which stems from the use of varifold distances, is that the initial and target shapes
are allowed to have different topologies. For example, one can match a single
circle to a pair of circles, as demonstrated in Fig. 2. This is not possible using
previous methods for shape matching using SRNFs or SRVTs. There are potential
applications in cell division and removal of topological noise. Another feature of
our algorithm is that it can account for functional data on the given shapes, as
demonstrated in Fig. 3. To this aim, the varifold distance in (5) is replaced by a
functional shape distance, as developed in [8, 6]. This has several applications. The
functional data may be dictated by the application at hand, as e.g. in the case of
texture information. An interesting alternative to be explored in future work is to
use shape descriptors as functional data to guide the matching algorithm.

3.4. Surfaces. For surfaces, we obtain some promising first results and see a high
potential of improvement over alternative methods. An example is presented in
Fig. 4, where the optimal point correspondences between two hand postures were
calculated. As the two triangulated surfaces in this experiment had different mesh
connectivities, and no point-to-point correspondences were initially available, we
had to initialize the optimization procedure with the template surface. After op-
timization using an adaptive choice of Lagrange multiplier λ in (5), we obtained

1Computer Vision Group at LEMS at Brown University: Database of 99 binary shapes. https:

//vision.lems.brown.edu/content/available-software-and-databases

https://vision.lems.brown.edu/content/available-software- and-databases
https://vision.lems.brown.edu/content/available-software- and-databases
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Figure 4. Anatomically correct correspondences obtained by
elastic matching of two surfaces. Left: template f0 (blue, 2322
vertices) and target f1 (red, 2829 vertices). Right: output f of the
matching algorithm (green) and a linear homotopy between f0 and
f .

an excellent fit of the deformed template onto the target with anatomically correct
point correspondences.
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