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Abstract. Signatures provide a succinct description of certain features of paths in a reparametrization
invariant way. We propose a method for classifying shapes based on signatures, and compare it to current
approaches based on the SRV transform and dynamic programming.
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1. Introduction

Shape analysis is a broad and growing subject addressing the analysis of different types of data
ranging from surfaces, landmarks, animation data etc. In this paper shapes are unparametrized curves.
Mathematically a shape is an equivalence class of curves under reparameterization, that is, two curves
c0, c1 : r0, 1s ÑM are equivalent and determine the same shape if there exists a strictly increasing smooth
bijection ϕ : r0, 1s Ñ r0, 1s such that c1 “ c0 ˝ ϕ. For a given curve c we denote by rcs the corresponding
shape.

The similarity between two shapes rc0s, rc1s is then defined by creating a distance function dS on the
space of shapes S,

dSprc0s, rc1sq :“ inf
ϕ
dPpc0, c1 ˝ ϕq (1)

where dP is a suitable reparameterization invariant Riemannian distance on the manifold of parametrized
curves.

Finding the optimal reparameterization ϕ is however computationally demanding, and in many applica-
tions simply unnecessary. This is specifically the case of applications where the optimal parametrization
is not explicitly used for further calculations, e.g. problems of identification and classification. Ways of
circumventing this step are therefore of great interest.

In recent years, after extensive work by Terry Lyons and collaborators, the theory of rough paths has
gained considerable importance as a toolbox for mathematical analysis and for mathematical modeling
in applications. In this context, the signature map provides a faithful representation of paths, captur-
ing their essential global properties. A fundamental property of the signature is its invariance under
reparameterization, surmising its importance for shapes.

In this paper, we define a measure of similarity between shapes in S by means of the signature. We
define a distance directly on S. We test the viability of this approach and use it to classify motion capture
animations from the CMU motion capture database [7]. Indeed, this leads to an efficient technique that
delivers results comparable to what is obtainable with methodologies based on the SRV transform, but at a
much lower computational cost.

2. Shape analysis on Lie groups

In the following, G will denote a finite-dimensional Lie group under multiplication with identity element
denoted by e. We let g denote the corresponding right Lie algebra g :“ LRpGq. For a fixed g P G, left and
right translation by g will be denoted Lgphq “ g ¨ h and Rgphq “ h ¨ g respectively.

2.1. Shape Space. We consider the space C8pr0, 1s, Gq of parameterized smooth curves on G, i.e. smooth
maps c : r0, 1s Ñ G. To model the curves as unparameterized, or independent of parameterization, we
define the shape space S as the quotient space

S “ C8pr0, 1s, Gq{Diff`, (2)

where Diff` is the group of orientation preserving diffeomorphisms of the parameter space r0, 1s. The
elements of S are equivalence classes of curves. The elements of the same class are curves which can be
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mapped to one another by changing their parameterization, that is, two curves c0, c1 P C8pI,Gq are equal
in shape space if there exists ϕ P Diff` such that c1 “ c0 ˝ ϕ.

In the setting of our application, the search for optimal time parametrizations can be viewed as syncing
up the animations, removing disturbances due to small pauses, different periodicity, or asynchronous
starting and stopping, by shifting the movement of one character to match the other as closely as possible.

2.2. Geodesic Distances on Shape Space. Our goal is to introduce a meaningful and computable
distance dS on S to estimate the similarity between two shapes. This area of research started with the
efforts of Younes [16]. We will restrict the space of curves to the space of immersions, i.e. curves with
non-vanishing first derivative, which we denote by

P “ Immpr0, 1s, Gq. (3)
Let dP be a pseudo-metric on P. We define dS, for two elements rc0s, rc1s P S, by

dSprc0s, rc1sq :“ inf
ϕPDiff`

dPpc0, c1 ˝ ϕq. (4)

As shown in [3, Lemma 3.4], dS will be a pseudo-metric on S if dP is a reparameterization invariant or, in
other words, if for any two c0, c1 PP and any ϕ P Diff` we have that

dPpc0 ˝ ϕ, c1 ˝ ϕq “ dPpc0, c1q. (5)
An obvious choice of metric on P is the familiar L2-metric. However, as shown by Michor and Mumford

[13], this metric leads to vanishing geodesic distance which renders it useless. They further show in [14]
that one solution to this problem is to consider metrics based on arc-length derivatives, creating a class of
Sobolev-type metrics.

There are multiple possible metrics in this class. One option is based on what is usually referred to as
the Square Root Velocity Transform (SRVT). This transform and accompanying metric was first introduced,
in the context of shape analysis, by Srivastava et al. [15], who used the transformation when working
with curves in Euclidian spaces. The transformation has later been adopted to more general shapes. Of
particular interest is the formulation for shapes that are represented as Lie-group valued curves [3].

We define the SRVT R : PÑ C8pr0, 1s, gzt0uq by

Rpcqptq–
R´1
cptq˚p 9cptqq
a

‖ 9cptq‖
. (6)

This transformation has the following useful properties [3, Lemma 3.6]:
(1) For every c PP and ϕ P Diff`, the following equivariant property holds:

Rpc ˝ ϕq “ Rpcq ˝ ϕ ¨
a

9ϕ. (7)
(2) It is translation invariant: for all c PP and g P G

RpRgpcqq “ Rpcq.

A similar result is true for shapes with values in Euclidean spaces [15].
Further, one can obtain a Riemannian metric dP˚ that coincides with the geodesic distance on a

submanifold P̊ ĂP by using the SRVT to pull back the L2-metric on C8pI, gzt0uq [3]. Further restricting
the immersion space to P̊ “ tc PP : cp0q “ eu, where e is the identity element in G, the distance dP̊

turns out to be reparameterization invariant.
This invariance implies, in particular, that it will also yield a geodesic distance on S̊ :“ P̊ {Diff`

[2]. The restriction to P̊ isn’t very troublesome as any curve can be transferred to this space by right
translation by the inverse of its initial value, that is Rcp0q´1 [3].

Using the equivariant property for the SRVT from equation (7) and defining qi “ Rpciq for i “ 0, 1, the
problem of calculating the metric for the shape space S̊ in equation (4) can be written as

dS̊ pc0, c1q “ inf
ϕPDiff`

pIq

d

ż

I

}q0ptq ´ q1pϕptqq ¨
a

9ϕ}2dt. (8)

Finding this infimum will generally be very difficult. The usual approach is therefore to discretize the
curves and solve instead a finite dimensional optimization problem. The most common methods used to
solve this problem in shape analysis [15] are based on either the gradient descent method or a dynamic
programming algorithm (DP). In our experiments we use the DP approach described in [1].
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3. Signatures

Signatures, introduced by K.-T. Chen [4] for smooth paths and later generalized by Lyons [11] under the
name of geometric rough paths, are an important tool for the study of the solutions of controlled differential
equations, but have also proved useful for solving classification problems of time series, Machine Learning
and Topological Data Analysis [6].

In the usual framework, signatures are defined for paths taking values in a Banach space. From a
geometric point of view, and in light of our purposes, this setting has to be adapted. Luckily, Chen also
considered signatures for curves taking values on a smooth manifold [4]. This definition is quite general and
relies on the selection of a frame bundle. For Lie groups there is a canonical choice: the Maurer–Cartan
form. This is the unique right-invariant one form ω such that ωe “ idg, i.e. ωpvq “ pR´1

g q˚v for v P TgpGq
[8, p. 311].

Below we denote, for a finite-dimensional vector space V of dimension d “ dimV , the tensor algebra
over V ,

T pV q–
à

ně0
V bn.

We observe that T pV q is always infinite-dimensional. Its dual space is denoted by T ppV qq– T pV q˚, and it
may be identified with the ring of formal power series in d noncommuting variables te1, . . . , edu.

Definition 3.1. Let G be a d-dimensional Lie group and α P C8pr0, 1s, Gq be a smooth curve and ω the
Maurer-Cartan form on G. The signature Spαq of α is the family of linear maps on T pRdq recursively
defined by xSpαqs,t, 1y– 1 and

xSpαqs,t, ei1¨¨¨ipy–

ż t

s

xSpαqs,u, ei1¨¨¨ip´1yω
ip
αpuqp 9αpuqqdu.

In this definition, the notation ωjgpvq denotes the j-th component of the vector ωgpvq P g in a basis of
the Lie algebra g of G.

The signature provides a compact description of certain features of a path [5]. One of its main advantages
in our context is its reparameterization invariance: for any orientation-preserving diffeomorphism ϕ on
rs, ts we have that

Spα ˝ ϕqs,t “ Spαqs,t.

Other fundamental properties include:
(1) For each 0 ď s ă t ď 1, the signature Spxqs,t belongs to the set of group-like elements of T ppRdqq,

and for any 0 ď s ď 1, Spxqs,s “ 1, the neutral element in the group.
(2) Chen’s rule: For any three 0 ď s ă u ă t ď 1 we have

Spxqs,u b Spxqu,t “ Spxqs,t.

Using these properties, signatures may be efficiently computed for some restricted classes of paths. For
example, if x is a straight line in Rd with base point a P Rd direction b P Rd, i.e. xt “ a` tb for t P r0, 1s,
then

Spxqs,t “ expbppt´ sqbq

“ 1` pt´ sqb` pt´ sq
2

2 bb b`
pt´ sq3

6 bb bb b` ¨ ¨ ¨ .
(9)

A similar statement is true for geodesic curves on a finite-dimensional compact Lie group.
We may think of signatures as an infinite vector indexed by words over the alphabet t1, . . . , du. In

particular, for a piecewise linear path the above formula means that if we want to know the component in
(9) corresponding to the word w “ i1 ¨ ¨ ¨ ik then

xSpxqs,t, ewy “
pt´ sqk

k!

k
ź

j“1
bij

For a general piecewise linear path x, we may use the above formula and Chen’s rule to deduce that
Spxqs,t “ expbp∆t1b1q b expbp∆t2b2q b ¨ ¨ ¨ b expbp∆tmbmq

where ∆tk “ tk ´ tk´1 are the length of the time intervals where the path is sampled and b1, . . . , bk are the
slopes of the path in each of these intervals. The entries of this expression may be computed by using a
Baker–Campbell–Hausdorff-type formula, for example.
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Finally, we remark that the signature possesses another interesting property, namely it is an homomor-
phism from path space with concatenation to the tensor algebra T ppRdqq. This means that if we are given
two paths x : r0, 1s Ñ G and y : r0, 1s Ñ G, and we concatenate them to form a new path x ¨ y, then

Spx ¨ yq0,1 “ Spxq0,1 b Spyq0,1.

Moreover, if we reverse the path x, i.e. we define ÐÝx ptq– xp1´ tq then
SpÐÝx q0,1 “ Spxq´1

0,1

where the inverse is taken in the group-like elements of the tensor algebra.
It can be shown that actually, as a function of time the signature satisfies the differential equation

d
dtSpxqs,t “ Spxqs,t b 9xt, Spxqs,s “ 1

in the tensor algebra. From this point of view, the signature map corresponds to the flow map of the
vector field given by the base path. Thus, the signature belongs to an infinite-dimensional Lie group whose
Lie algebra is the free Lie algebra over Rd which we denote by LpRdq. It does not, however, constitute a
one-parameter subgroup. Therefore, for each fixed time interval rs, ts we can map the signature to the free
Lie algebra via a logarithm map, and we define

Λpxqs,t “ logpSpxqs,tq P LpRdq.
This element, called the log-signature in the literature, provides a minimal description of the path, which is
equivalent to the full signature.

There are many ways in which signatures can be used to compare shapes, but the essential feature
is that since the map S is reparameterization invariant, one obtains a way of directly comparing shapes
instead of parameterized curves. For our experiments we chose a particular distance on T ppRdqq (see next
section for the precise formula), but this is by no means the only possible choice.

In making this choice one has to truncate the signature to obtain a finite-dimensional object. Due to the
factorial decay of iterated integrals little information is lost in the process; still, some level has to be chosen
and usually this done by running experiments. Once the truncation level is chosen, several choices of metric
are available: the truncated tensor algebra becomes finite-dimensional so it has a nice linear structure and
we are free to choose norms on it subject to some compatibility restrictions. There is also the notion of
homogeneous norm on group-like elements, which takes into account the geometry of this group. Finally,
the logarithm in this group maps signatures into a linear space (the free Lie algebra) in a bijective way, so
no information is lost, but there is a substantial dimensional reduction.

According to our observations, is the last option which represents the most robust choice in terms of
noise sensitivity, while also providing an accurate way of comparing signatures.

4. Experiments

Motion capture animations are usually recorded as the angle of every joint in a skeleton for every frame
in an animation. A natural setting for the rotating joints is the Lie group of 3D rotations, SOp3q. Every
frame consists of d independently rotating joints so the frame can be modeled as an element in SOp3qd,
where SOp3qd is the Cartesian product of d copies of SOp3q. Interpolating between the frames will then
allow us to model the animation as a parameterized curve.

We use an interpolation scheme in which one uses the log map to linearly interpolate on the Lie algebra,
and then pull back to the Lie group with the exponential map. Let A,B P SOp3q, we define the interpolation
κ : r0, 1s Ñ SOp3q between A and B as

κpsq– exp
`

s log
`

B ¨AT
˘˘

¨A.

Notice that κp0q “ A and κp1q “ B. Applying this interpolation component-wise to the frames in SOp3qd
will enable us to construct a piece-wise interpolation between the frames of the animation. The Maurer–
Cartan form along the interpolation is piece-wise constant, making it easy to compute SRV representations,
dP̊ -metrics, and signatures.

To test the effectiveness of the proposed frameworks we check whether they are able to identify different
types of character motion. We have selected animations from the CMU motion capture database with
descriptions "walk", "run/jog" and "forward jump". These are similar in length, and should produce results
that conform with human intuition.

The test will calculate a distance matrix using the proposed similarity measures. From the distance matrix
we produce a multidimensional scaling plot(MDS), depicting how similar, or dissimilar, the animations are.
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MDS tries to place the data points in 2-dimensional scatter plot while preserving the distances given by
the distance matrix. See Kruskal [9] for more more information on this method.

In Figure 2 we calculate the distance matrix using the metric dP̊ on interpolation curves in P̊ , and
in Figure 3 we use the metric dS̊ , equation (8), on the shapes generated by the curves in S̊ , where
the optimal reparameterization is calculated with a DP algorithm. There are little to no patterns when
projecting to the space pP̊ , dP̊ q, as seen in Figure 2. In Figure 3 however, we observe that modelling
the curves as being parameterization invariant yields three easily distinguishable clusters of animations.
Compared to Figure 2 we see a big benefit from this model assumption.

In Figure 1 the animations are projected to the shape space S equipped with the distance function
dsigpc0, c1q “

∥∥∥ logSpc0q
‖logSpc0q‖ ´

logSpc1q
‖logSpc1q‖

∥∥∥. While this figure does reveal the same structure as seen in figure 3,
the clusters exhibit both a higher internal and a lower external variability. An important take away from
this experiment is that this distance function in fact does preserve some of the structure of the shape space.
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run
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jump

jump

walk

walk
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walk

run run
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run run
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Figure 1. Multi dimensional scaling plot of distance matrix calculated from by projecting
animations to the space S̊ equipped with the distance function dsig. In this plot we have
taken animation with descriptions "run/jog", "forward jump" and "walk" from the CMU
Motion Capture Database [7].
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Figure 2. Animations projected to P̊ with distance matrix calculated with the metric dP̊ .
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Figure 3. Animations projected to S̊ with distance matrix calculated with metric dS̊

using a DP algorithm.

5. Concluding Remarks

Our preliminary experiments, show that classifying animations using a distance function on S̊ based on
signatures produces very encouraging results. The proposed method is computationally very efficient, even
though somewhat less accurate than known methods in shape analysis.

The Riemannian metric (4) requires calculating the optimal reparameterizations between every pair of
animations. The proposed signature method instead only requires calculating the signature once for every
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animation, and then compares animations by computing inexpensive norms. The optimisation procedure is
no longer necessary. 1

In our experiments, the signature method outpreformed the optimal reparameterization metric by a
factor of „ 2000 when classifying animations. A more precise comparison with the SRVT approach and
other methods, see e.g. [10] goes beyond the scope of this work and will be considered in future work. Still
our preliminary experiments give an idea of the possible performance benefits gained with the signature
approach.

Increasing the accuracy of the signature method might also be possible by defining a more precise
similarity measure. Nonetheless, our results can be seen as proof of concept for using signatures as an
efficient way of classifying shapes.
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