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Abstract

The traditional Minkowski distances are induced by the corresponding Minkowski norms in
real-valued vector spaces. In this work, we propose novel statistical symmetric distances based
on the Minkowski’s inequality for probability densities belonging to Lebesgue spaces. These
statistical Minkowski distances admit closed-form formula for Gaussian mixture models when
parameterized by integer exponents. This result extends to arbitrary mixtures of exponential
families with natural parameter spaces being cones: This includes the binomial, the multinomial,
the zero-centered Laplacian, the Gaussian and the Wishart mixtures, among others. We also
derive a Minkowski’s diversity index of a normalized weighted set of probability distributions
from Minkowski’s inequality.

Keywords: Minkowski £, metrics, L, spaces, Minkowski’s inequality, statistical mixtures, exponen-
tial families, multinomial theorem, statistical divergence, information radius, projective distance,
scale-invariant distance, homogeneous distance.

1 Introduction and motivation

1.1 Statistical distances between mixtures

Gaussian Mixture Models (GMMs) are flexible statistical models often used in machine learn-
ing, signal processing and computer vision [41l 19] since they can arbitrarily closely approximate
any smooth density. To measure the dissimilarity between probability distributions, one often re-
lies on the principled information-theoretic Kullback-Leibler (KL) divergence [8], commonly called
the relative entropy. However the lack of closed-form formula for the KL divergence between
GMM has motivated various KL lower and upper bounds [16, 15, 37, [38] for GMMs or approx-
imation techniques [10], and further spurred the design of novel distances that admit closed-form
formula between GMMs [28]. To give a few examples, let us cite the statistical squared Eu-
clidean distance [19] 21], the Jensen-Rényi divergence [41] (for the quadratic Rényi entropy), the

"When the GMMs share the same components, it is known that the KL divergence between them amount to an
equivalent Bregman divergence [35] that is however computationally intractable because its corresponding Bregman
generator is the differential negentropy that does not admit a closed-form expression in that case.
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Cauchy-Schwarz (CS) divergence [18, 20], and a statistical distance based on discrete optimal trans-
port [22] [38].

A distance D : X x X — R is a non-negative real-valued function D on the product space X x X
such that D(p,q) = D((p,q)) = 0 iff. p = q. A distance D(p : q) between p and ¢ may not be
symmetric: This fact is emphasized by the *:’ delimiter notation: D(p : ¢) # D(q : p). For example,
the KL divergence is an oriented distance: KL(p : q¢) # KL(q : p). Two usual symmetrizations of
the KL divergence are the Jeffreys’ divergence and the Jensen-Shannon divergence [27]. Informally
speaking, a divergenccﬁ is a smooth dz'stanceﬁ that allows one to define an information-geometric
structure [2]. In other words, a divergence is a smooth premetric distance [9].

Recently, the Cauchy-Schwarz divergence [I8] has been generalized to Holder divergences [39)].
These Cauchy and Holder distances D(p : q) are said to be projective because D(Ap : Nq) = D(p : q)
for any A\, \ > 0. An important family of projective divergences for robust statistical inference
are the y-divergences [13, [33]. Interestingly, those projective distances do not require to handle
normalized probability densities but only need to consider positive densities instead (handy in
applications). The Holder projective divergences do not admit closed-form formula for GMMs,
except for the very special case of the CS divergence. The underlying reason is that the conjugate
exponents é + % = 1 of Holder divergences would need to be both integers. This constraint yields
a = =1, giving the special case of the CS divergence (the other integer exponent case is in the
limit when a = 0 and = c0).

1.2 Minkowski distances and Lebesgue spaces

The renown Minkowski distances are norm-induced metrics [9] measuring distances between d-
dimensional vectors z,y € R% defined for o > 1 by:

o

d
Mo (z,y)=[lz = ylla = <Z |z —yi!“) : (1)
i=1

1
where the Minkowski norms are given by ||z|l, = (Zle |$Z|a) “. The Minkowski norms can be
extended to countably infinite-dimensional ¢, spaces of sequences (see [1], p. 68).

Let (X, F) be a measurable space where F denotes the o-algebra of X', and let 1 be a probability
measure (with p(X) = 1) with full support supp(u) = X (where supp(p):=cl({F € F : u(F') > 0})
and cl denotes the set closure). Let F be the set of all real-valued measurable functions defined on
X. We define the Lebesgue space [1] Lo (p) for a > 1 as follows:

Lo(py={1 ¥+ [ If@lduta) <o} 2)

The Minkowski distance [25] of Eq. [[l can be generalized to probability densities belonging to
Lebesgue L, (1) spaces, to get the statistical Minkowski distance for o > 1:

M= ( [ te) - q<a:>|adu<w>>é. 3)

2 Also called a contrast function in [I1].
3A Riemannian distance is not smooth but a squared Riemannian distance is smooth.



When « = 1, we recover twice the Total Variation (TV) metric:

V(0= [ Ip(a) ~ a@)iduta) = 5 I = alls gy = 51(0.0) (1
Notice that the statistical Minkowski distance does not admit closed-form formula in general be-
cause of the absolute value. The total variation is related to the probability of error in Bayesian
statistical hypothesis testing [29].

In this work, we design novel distances based on the Minkowski’s inequality (triangle inequal-
ity for Lo(p), which proves that ||p[/z,(.) is a norm (i.e., the L,-norm), so that the statisti-
cal Minkowski’s distance between functions of a Lebesgue space can be written as M,(p,q) =
P = qll£o (). The space Lo(p) is a Banach space (ie., complete normed linear space).

1.3 Paper outline

The paper is organized as follows: Section [2] defines the new Minkowski distances by measuring in
various ways the tightness of the Minkowski’s inequality applied to probability densities. Section
proves that all these statistical Minkowski distances admit closed-form formula for mixture of
exponential families with conic natural parameter spaces for integer exponents. In particular, this
includes the case of Gaussian mixture models. Section[llists a few examples of common exponential
families with conic natural parameter spaces. In Section B we define Minkowski’s diversity indices
for a normalized weighted set of probability distributions. Finally, section [6] concludes this work
and hints at perspectives.

2 Distances from the Minkowski’s inequality

Let us state Minkowski’s inequality:

Theorem 1 (Minkowski’s inequality). For p(z),q(x) € Lq(p) with o € [1,00), we have the follow-
ing Minkowski’s inequality:

(1) + o) aute)) " < (/ rp<x>\adu<x>); +(/ \q@),admf , (5)

with equality holding only when q(x) = 0 (almost everywhere, a.e.), or when p(x) = \g(x) a.e. for
A>0 fora>1.

The usual proof of Minkowski’s inequality relies on Holder’s inequality [40} 39]. Following [39],
we define distances by measuring in several ways the tightness of the Minkowski’s inequality. When
clear from context, we shall write || - ||, for short instead of || - ||z, (). Thus Minkowski’s inequality
writes as:

P+ qlla < lIPlla + llglla- (6)

Minkowski’s inequality proves that the L,-spaces are normed vector spaces.

Notice that when p(z) and g(x) are probability densities (i.e., [ p(z)du(z) = [¢(z)du(z) = 1),
Minkowski’s inequality becomes an equality iff. p(z) = ¢(x) almost everywhere, for a > 1. Thus
we can define the following novel Minkowski’s distances between probability densities satisfying the
identity of indiscernibles:



Definition 2 (Minkowski difference distance). For probability densities p,q € Lo (1), we define the
Minkowski difference Dy(+,-) distance for o € (1,00) as:

Do(p, 0):=plla + lglla — P + qlla > 0. (7)

Definition 3 (Minkowski log-ratio distance). For probability densities p,q € Lo (), we define the
Minkowski log-ratio distance Ly(+,-) for a € (1,00) as:

P+ qlla Iplla + llqlla
Lqo(p,q)i=—log———————— =log———— > 0. 8
(P 4) olla+ T TR (®)

By construction, all these Minkowski distances are symmetric distances: Namely, M, (p,q) =
Mo (q,p); Da(p,q) = Da(q,p) and La( g

Notice that Ly (p, q) is scale invariantl: Lo( /\p, )\q L. (p,q) for any A\ > 0. Scale-invariance is
a useful property in many signal processing applications. For example, the scale-invariant Itakura-
Saito divergence (a Bregman divergence) has been successfully used in Nonnegative Matrix Factor-
ization [12] (NMF). Distance Dy (p, q) is homogeneous since Dq(Ap, Aq) = |A\|Do(p, q) for any A € R
(and so is distance My (p, q)).

3 Closed-form formula for statistical mixtures of exponential fam-
ilies

In this section, we shall prove that D, and L, between statistical mixtures are in closed-form for

all integer exponents (and M, for all even exponents) for mixtures of exponential families with

conic natural parameter spaces.

Let us first define the positively weighed geometric integral I of a set {p1,...,pr} of k probability
densities of Ly (p) as:

I(pl,...,pk;al,...,ak)::/ p1(2) . pe(x)®* du(z), acRE. 9)
X

An exponential family [7,31] &, is a set {pg(x)}¢ of probability densities wrt. p which densities
can be expressed proportionally canonically as:

po() o< exp(t(z)"0), (10)

where t(z) is a D-dimensional vector of sufficient statistics [7]. The term #(z)'6 can be writ-
ten equivalently as (t(z),#), where (-,-) denotes the scalar product on R”. Thus the normalized
probability densities of & , can be written as:

po(x) = exp (t(az)TH — F(9)> ) (11)

where

F(G)::log/Xexp(t(m)TH)du(a:), (12)

4Like any distance based on the log ratio of triangle inequality gap induced by a homogeneous norm.



is called the log-partition function (also called cumulant function [7] or log-normalizer [31]). The
natural parameter space is:

O:m {9 ERD . /X exp(t(z) T 0)dpu(z) < oo} . (13)

Many common distributions (Gaussians, Poisson, Beta, etc.) belong to exponential families in
disguise [7} [31].

Lemma 4. For probability densities pg,,...,pg, belonging to the same exponential family & ,,, we

have: i i
I(pgl, ey DO O ,Oék) = exp <F <Z a192> — Z OéZF(HZ)> < 00, (14)
i=1 i=1

provided that Zle o;0; € ©.
Proof.

Lo pyionssan) = [ I (exp ((t@)70: = F(8)))) " duta),
1=1

= /eXp t(l’)—r(z a,HZ) - Z CYZF(HZ) + F (Z 04Z92> —F <Z a,@z) d,u(x),

=0

exp (F (Z aie,) - Zi:aiF(Hi)> /X exp <t(x)T <Z ai9i> - F (Z a,-@,-)) dp(z),

=1

exp (F(Z a;b;) — Z aiF(ei)> )

since [y exp (¢(x) T (3, i) — F(32; i) du(x) = [y Py au0,(2)du(x) = 1, provided that
0:= Y0, € © (and pg € & ). O

In particular, the condition ), o;6; € © always holds when the natural parameter space © is a
cone. In the remainder, we shall call those exponential families with natural parameter space being
a cone, Conic Exponential Families (CEFs) for short. Note that when ), a;6; ¢ ©, the integral
I(po,s---,p6,; 0, -, ) diverges (that is, I(pg,,...,pe,;1,...,0) = 00).

Observe that for a CEF density pyp(z), we have pg(z)® in Ly (p) for any a € [1, 00).

Corollary 5. We have I(pg,,...,Do,;01,--.,0u) =exp (F (D, a;0;) — >, a; F(0;)) < oo for prob-
ability densities belonging to the same exponential family with natural parameter space © being a
cone.

We also note in passing that I(p1,...,pg;a1,...,a5) < 0o for a € Rk for probability densities
belonging to the same exponential family with natural parameter space being an affine space (e.g.,
Poisson or isotropic Gaussian families [32]).



Let us define:

JF(91, . e ,Qk; (6% I ,Oék)Z: Z a,F(@Z) —F (Z a,@,) . (15)

This quantity is called the Jensen diversity [30] when a € Ay (the (k — 1)-dimensional standard
simplex), or Bregman mformatlonﬁ in [5]. Although the Jensen diversity is non-negative when
o € Ay, this Jensen diversity of Eq. [[3] maybe negative when a € R’i. When a € R’i, we thus call
the Jensen diversity the generalized Jensen diversity. It follows that we have:

’[(p€17”’7p€k;a17"'7ak) :exp(_JF(917"'79k;a17”’7ak)) (16)

The CEFs include the Gaussian family, the Wishart family, the Binomial /multinomial family,
etc. [7, 311 28].

Let us consider a finite positive mixture m(z) = Zle w;p;(x) of k probability densities, where
the weight vector w € R'j_ are not necessarily normalized to one.

Lemma 6. For a finite positive mizture m(xz) with components belonging to the same CEF,
||, () s finite and in closed-form, for any integer a > 2.

Proof. Consider the multinomial expansion m(z)* obtained by applying the multinomial theo-

rem [0]:
A= Y <a1 | ) H (w;p;( (17)
Yy ai=a h =1
a; EN
h
where N o N
(al,...,ak>'_a1!x...xak!’ ( )

is the multinomial coefficient [4]. Tt follows that:

k
/ﬁ@(az)adu(az): Z <a1,.$¥.,ak> rllw;{j I(p1,...,pk;0a, ..., o). (19)
j=

> =
a; EN

Thus the term [ m(z)*du(z) amounts to a positively weighted sum of integrals of monomi-
als that are positively weighted geometric means of mixture components. When p; = py,, since
I(po,,---.po,;0a,--.,04) < oo using Eq. [, we conclude that m € Lo (1) for o € N, and we get the
formula:

Vil = | > <a1 )Hw exp (—Tr(Or. . Oion o)) | . (20)

for o € N. O

5Because > i iBr(6:
F)—F(@O)—(0-60)"

: é) = Jp(61,...,05;1,...,05) for the barycenter 0 = >, by, where Br(0 : 0" =
VF(0') is a Bregman divergence.



A naive multinomial expansion of m(z)® yields k terms that can then be simplified. Using the
multinomial theorem, there are (k+g_1) integral terms in the formula of [ (Zle wip; (x))*dp(z).
This number corresponds to the number of sequences of k disjoint subsets whose union is {1, ..., a}
(also called the number of ordered partitions but beware that some sets may be empty).

The multinomial expansion can be calculated efficiently using a generalization of Pascal’s tri-
angle, called Pascal’s simplex [26], thus avoiding to compute from scratch all the multinomial
coefficients.

We have the following generalized Pascal’s recurrence formula for calculating the multinomial

coefficients:
« b a—1
A, ...,0 prt at,...,0; — 1, .0 0
with the terminal cases (a1 O‘ak) = 0 if there exists an «; < 0. Also by convention, we set

conveniently (a1 O‘ak) = 0 if there exists a; > a.

An efficient way to implement the multinomial expansion using nested iterative loops follows
from this identity:

k @ «@ a1 [ 7)) a a a
(Zm) Y YLy <a1> (é)( ’“‘1>x§‘—“1$§“‘“2...:c;“if‘aklx‘,j“. (22)
1=1

O
a1=0 az=0 ak,1:0 k=2

We are now ready to show when the statistical Minkowski’s distances M,, D, and L, are in
closed-form for mixtures of CEFs using Lemma [6l

Theorem 7 (Closed-form formula for Minkowski’s distances). For miztures m = Zle w;pp, and

m! = Zflzl w;pgg_ of CEFs £, 4, Do and Lo admits closed-form formula for integers a > 2, and M,

is in closed-form when a > 2 is an even positive integer.

Proof. For Dy, and Ly, it is enough to show that ||m/||z (), M ||, () and [[m +m/||L, () are all in

closed-form. This follows from Lemma [G] by setting m to be m, m’ and m + m/, respectively. The

k+k +a— 1) ) .

overall number of generalized Jensen diversity terms in the formula of D, or L, is O <( o

Now, consider distance M,. To get rid of the absolute value in M, for even integers a, we
rewrite M, as follows:

M (m,m') = Hm—m’uLa(u):( / |m<:c>—m’<x>|adu<:c>)a,

1

= ([ () - m)?)  ant))”

m(x) = (m(z) —m'(x))? (23)
= m(z)? +m/(z)? — 2m(z)m’ (z), (24)

2 k' 2 koK
= <Z w; Py, (x)) + Z wz-p(;} ()] =2 Z Z w;w;pg, (T)py: () (25)

i=1 j=1 i=1 j=1



We have the density products pg ¢ :=pepe = I(pe,per;1,1) € L%(u) (using Lemma []) for any
6,0' € © and a > 2. When a = 2, § = 1, and we easily reach a closed-form formula for My (m,m’).
Otherwise, let us expand all the terms in Eq. 25 and rewrite m(z) = Z{i L w po,0;- Now, a key
difference is that w; € R, and not necessarily positive. Nevertheless, since 5 € N, we can still

use the multinomial theorem to expand ﬁl(l’)%, distribute the integral over all terms, and compute

elementary integrals I(pp, g1, - -, Poy 0/ ; af, ..., o) with Z{il o) = § in closed-form. Thus M, is

available in closed-form for mixtures of CEFs for all even positive integers o« > 2. The number of
12

terms in the M, formula is O ((max(kQ’I; Ha_l)). O

Note that there exists a generalization@ of the binomial theorem to real exponents o € R called
Newton’s generalized binomial theorem using an infinite series of general binomial coefficients:

(0% — a—1 .1 2
(x1 + z2) ZE:O <Z>x1 xh, (26)
with the generalized binomial coefficient defined by:

<a> ala—1).. (a—i+1) D(a+1)

i

il T(a—i+ (G +1)

where I'(z):= [;° t*~'e~'d¢ is the Gamma function extending the factorial: I'(n) = (n — 1)!. Equa-
tion (26 is only valid whenever the infinite series converge. That is, for |x1| > |z2|. When extending
to mixture densities (i.e., (w1p1(x) + wap2(x))*) and taking the integral, we therefore need to split
the integral into two integrals depending on whether wipi(z) > wopa(z), or not. Furthermore, we
need to compute these integrals on truncated support domains: This becomes very tricky as the
dimension of the support increase [14].

4 Some examples of conic exponential families

Let us report a few conic exponential families with their respective canonical decompositions. The
measure p is usually either the Lebesgue measure on the Euclidean space (i.e., du(z) = dz), or the
counting measure.

e Bernoulli/multinomial families. The Bernoulli density is p(z;\) = A%(1 — A\)'™% with
A€ (0,1) = Ay, for X = {0,1}. The natural parameter is 6 = log 1i)\ and the conic natural
parameter space is © = R. The log-partition function is F(8) = log(1 + €?). The sufficient
statistics is t(z) = x.

The multinomial density generalizes the Bernoulli and the binomial densities. Here, we con-
sider the categorical distribution also called “multinoulli” distribution. The multinoulli den-

sity is given by:
d

plai A, Aa) = [ A7

i=1

5There also exists a generalization of the multinomial theorem to real exponents, however, this is much less known
in the literature (see http://fractional-calculus.com/multinomial_theorem.pdf).
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where A € Ay, the (d—1)-dimensional standard simplex. We have X = {0, 1}¢. The sufficient

statistic vector is t(x) = (z1,...,24—1). The natural parameter is a (d— 1)-dimensional vector
Ad—1

with natural coordinates 6 = <10g f\‘—;, ..., log = > The conic natural parameter space is

© = R?! (je., a non-pointed cone). The log—partltlon function is F(0) = log(1 + Zf 1169 ).

e Zero-centered Laplacian family. The density is p(z;0) = e - and the sufficient
statistic is t(x) = |z|. The natural parameter is § = —% with the conic parameter space
© = (—00,0) = R__. The log-normalizer is F(f) = log(-%;). See [3] for an application of
Laplacian mixtures.

e Multivariate Gaussian family. The probability density of a d-variante Gaussian distribu-

tion is: ( )T 1( )
' 1 T—pu)rEX N (z—p d
p(w7u72)=WeXP<— 5 >7 reR

where |X| denotes the determinant of the positive-definite matrix 3. The natural parameter
consists in a vector part 6§, and a matrix part 0y: 0 = (0,,0) = (X~ 'u, X1, The conic
natural parameter space is © = R¢ x Si +, where Sf‘ﬁ . denotes the cone of positive definite
matrices of dimension d x d. The sufficient statistics are (x, 2z '). The log-partition function
is:

F(0) = %9{95;9” - %log 03] + g log 2.

e Wishart family. The probability density is

ndl

tr(ST1X)

_l
2

| X]
2% 15|31 (5)

p(X;n,S) = ) XGSi+

with S > 0 denoting the scale matrix and n > d — 1 denoting the number of degrees of
freedom, where I'y is the multivariate Gamma function:

d
Ty(x) = r?DATIT (@ + (1 - 4)/2).
j=1

tr(X) denotes the trace of matrix X. The natural parameter is composed of a scalar 6
and a matrix part Oy 6 = (65,0n) = ("‘Td_l, S~1). The conic natural parameter space is
© =R, x S¢,. The sufficient statistics are (log | X|, X). The log-partition function is:

F(9)=Wl (9 +d%> log [fr] + log Ty <9 +¥>.

See [17] for an application of Wishart mixtures.

5 Minkowski’s diversity index

Informally speaking, a diversity indezr is a quantity that measures the variability of elements in
a data set (i.e., the diversity of a population). For example, the (sample) variance of a (finite)



point set is a diversity index. Point sets uniformly filling a large volume have large variance (and a
large diversity index) while point sets with points concentrating to their centers of mass have low
variance (and a small diversity index).

Recall that the Jensen diversity index [34] of a normalized weighted set {p1 = pog,,...,Pn = po, }
of densities belonging to the same exponential family (also called information radius [23] or Bregman
information [5], [36]) is defined for a strictly convex generator F' by:

JF(91,. .o ,Hn;wl,. .o ,wn)::ZwiF(Hi) - F <Zw291> > 0.
i=1

i=1

When F(0) = 1(6,0), we recover from Jp the variance.
We shall consider finite mixtures [24] 5] with linearly independent component densities. Using
Minkowski’s inequality iteratively for f1,..., f, € Lo(1), we get:

/3

> filx)
i=1

adﬂ(@f < ; ( [ 1@ rant) ) " (27)

When « > 1, equality holds when the f;’s are proportional (a.e. ). By setting f; = w;p;, we define
the Minkowski’s diversity index:

Definition 8 (Minkowski’s diversity index). Define the Minkowski diversity index of n weighted
probability densities of Lo (1) for a > 1 by:

n 1
TMp1, .o pnywr, .. wy) = Zwi (/pi(:n)ad,u(:n)> - </
i=1
= Y willpilla — ||D>_ wips
i=1 i=1

It follows a closed-form formula for the Minkowski’s diversity index of a weighted set of distri-
butions (ie., a mixture) belonging to the same CEF:

du(:v)) " (@)

Z w;p;i ()

> 0. (29)

07

Corollary 9. The Minkowski’s diversity index of n weighted probability distributions belonging to
the same conic exponential family is finite and admits a closed-form formula for any integer a > 2.

6 Conclusion and perspectives

Designing novel statistical distances which admit closed-form formula for Gaussian mixture models
is important for a wide range of applications in machine learning, computer vision and signal
processing [I8]. In this paper, we proposed to use the Minkowski’s inequality to design novel
statistical symmetric Minkowski distances by measuring the tightness of the inequality either as
an arithmetic difference or as a log-ratio of the left-hand-side and right-hand-side of the inequality.
We showed that these novel statistical Minkowski distances yield closed-form formula for mixtures
of exponential families with conic natural parameter spaces whenever the integer exponent a > 2.
In particular, this result holds for Gaussian mixtures, Bernoulli mixtures, Wishart mixtures, etc.
We termed those families as Conic Exponential Families (CEFs). We also reported a closed-form

10



formula for the ordinary statistical Minkowski distance for even positive integer exponents. Finally,
we defined the Minkowski’s diversity index of a weighted population of probability distributions (a
mixture), and proved that this diversity index admits a closed-form formula when the distributions
belong to the same CEF.

Let us conclude by listing the formula of the statistical Minkowski distances for a = 2 for
comparison with the Cauchy-Schwarz (CS) divergence:

My(my,mo) = |my —mal,
Do(mi,ma) = |my +malla — (|m1]l2 + [|mal2),
|m1 + mal|2
La(myi,mg) = —log :
[mall2 + [[mal|2
Cs(mlamQ) = —log ||m1m2||1 = —:[()g<7’nl777’n2>2

[mall2llmallz [ [l2l|mall2’

where (f,g)y = [ f(z)g(z)du(z) for f,g € La(u). Note that for « = 2, La(p) is a Hilbert space
when equipped with this inner product. We get closed-form formula for these statistical Minkowski’s
distances between mixtures m; and mgy of CEFs, as well as for the Cauchy-Schwarz divergence. All
those statistical distances can be computed in quadratic time in the number of mixture components.

Selecting a proper divergence from a priori first principles for a given application is a paramount
but difficult task [9]. Often one is left by checking experimentally the performances of a few
candidate divergences in order to select the a posteriori ‘best’ one. We hope that these newly
proposed statistical Minkowski’s distances, D, and scale-invariant L., will prove experimentally
useful in a number of applications ranging from computer vision to machine learning and signal
processing.

Additional material is available from
https://franknielsen.github.io/MinkowskiStatDist/

Acknowledgments: The author would like to thank Gaétan Hadjeres for his careful reading and
feedback.
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