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Abstract

The traditional Minkowski distances are induced by the corresponding Minkowski norms in
real-valued vector spaces. In this work, we propose novel statistical symmetric distances based
on the Minkowski’s inequality for probability densities belonging to Lebesgue spaces. These
statistical Minkowski distances admit closed-form formula for Gaussian mixture models when
parameterized by integer exponents. This result extends to arbitrary mixtures of exponential
families with natural parameter spaces being cones: This includes the binomial, the multinomial,
the zero-centered Laplacian, the Gaussian and the Wishart mixtures, among others. We also
derive a Minkowski’s diversity index of a normalized weighted set of probability distributions
from Minkowski’s inequality.

Keywords: Minkowski ℓp metrics, Lp spaces, Minkowski’s inequality, statistical mixtures, exponen-
tial families, multinomial theorem, statistical divergence, information radius, projective distance,
scale-invariant distance, homogeneous distance.

1 Introduction and motivation

1.1 Statistical distances between mixtures

Gaussian Mixture Models (GMMs) are flexible statistical models often used in machine learn-
ing, signal processing and computer vision [41, 19] since they can arbitrarily closely approximate
any smooth density. To measure the dissimilarity between probability distributions, one often re-
lies on the principled information-theoretic Kullback-Leibler (KL) divergence [8], commonly called
the relative entropy. However the lack of closed-form formula for the KL divergence between
GMMs1 has motivated various KL lower and upper bounds [16, 15, 37, 38] for GMMs or approx-
imation techniques [10], and further spurred the design of novel distances that admit closed-form
formula between GMMs [28]. To give a few examples, let us cite the statistical squared Eu-
clidean distance [19, 21], the Jensen-Rényi divergence [41] (for the quadratic Rényi entropy), the

1When the GMMs share the same components, it is known that the KL divergence between them amount to an
equivalent Bregman divergence [35] that is however computationally intractable because its corresponding Bregman
generator is the differential negentropy that does not admit a closed-form expression in that case.
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Cauchy-Schwarz (CS) divergence [18, 20], and a statistical distance based on discrete optimal trans-
port [22, 38].

A distance D : X ×X → R is a non-negative real-valued function D on the product space X ×X
such that D(p, q) = D((p, q)) = 0 iff. p = q. A distance D(p : q) between p and q may not be
symmetric: This fact is emphasized by the ’:’ delimiter notation: D(p : q) 6= D(q : p). For example,
the KL divergence is an oriented distance: KL(p : q) 6= KL(q : p). Two usual symmetrizations of
the KL divergence are the Jeffreys’ divergence and the Jensen-Shannon divergence [27]. Informally
speaking, a divergence2 is a smooth distance3 that allows one to define an information-geometric
structure [2]. In other words, a divergence is a smooth premetric distance [9].

Recently, the Cauchy-Schwarz divergence [18] has been generalized to Hölder divergences [39].
These Cauchy and Hölder distances D(p : q) are said to be projective because D(λp : λ′q) = D(p : q)
for any λ, λ′ > 0. An important family of projective divergences for robust statistical inference
are the γ-divergences [13, 33]. Interestingly, those projective distances do not require to handle
normalized probability densities but only need to consider positive densities instead (handy in
applications). The Hölder projective divergences do not admit closed-form formula for GMMs,
except for the very special case of the CS divergence. The underlying reason is that the conjugate
exponents 1

α + 1
β = 1 of Hölder divergences would need to be both integers. This constraint yields

α = β = 1, giving the special case of the CS divergence (the other integer exponent case is in the
limit when α = 0 and β = ∞).

1.2 Minkowski distances and Lebesgue spaces

The renown Minkowski distances are norm-induced metrics [9] measuring distances between d-
dimensional vectors x, y ∈ R

d defined for α ≥ 1 by:

Mα(x, y):=‖x− y‖α =

(
d∑

i=1

|xi − yi|
α

) 1

α

, (1)

where the Minkowski norms are given by ‖x‖α =
(
∑d

i=1 |xi|
α
) 1

α
. The Minkowski norms can be

extended to countably infinite-dimensional ℓα spaces of sequences (see [1], p. 68).
Let (X ,F) be a measurable space where F denotes the σ-algebra of X , and let µ be a probability

measure (with µ(X ) = 1) with full support supp(µ) = X (where supp(µ):=cl({F ∈ F : µ(F ) > 0})
and cl denotes the set closure). Let F be the set of all real-valued measurable functions defined on
X . We define the Lebesgue space [1] Lα(µ) for α ≥ 1 as follows:

Lα(µ):=

{

f ∈ F :

∫

X

|f(x)|αdµ(x) < ∞

}

. (2)

The Minkowski distance [25] of Eq. 1 can be generalized to probability densities belonging to
Lebesgue Lα(µ) spaces, to get the statistical Minkowski distance for α ≥ 1:

Mα(p, q):=

(∫

X

|p(x)− q(x)|αdµ(x)

) 1

α

. (3)

2Also called a contrast function in [11].
3A Riemannian distance is not smooth but a squared Riemannian distance is smooth.
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When α = 1, we recover twice the Total Variation (TV) metric:

TV(p, q):=
1

2

∫

|p(x)− q(x)|dµ(x) =
1

2
‖p− q‖L1(µ) =

1

2
M1(p, q). (4)

Notice that the statistical Minkowski distance does not admit closed-form formula in general be-
cause of the absolute value. The total variation is related to the probability of error in Bayesian
statistical hypothesis testing [29].

In this work, we design novel distances based on the Minkowski’s inequality (triangle inequal-
ity for Lα(µ), which proves that ‖p‖Lα(µ) is a norm (i.e., the Lα-norm), so that the statisti-
cal Minkowski’s distance between functions of a Lebesgue space can be written as Mα(p, q) =
‖p− q‖Lα(µ)). The space Lα(µ) is a Banach space (ie., complete normed linear space).

1.3 Paper outline

The paper is organized as follows: Section 2 defines the new Minkowski distances by measuring in
various ways the tightness of the Minkowski’s inequality applied to probability densities. Section 3
proves that all these statistical Minkowski distances admit closed-form formula for mixture of
exponential families with conic natural parameter spaces for integer exponents. In particular, this
includes the case of Gaussian mixture models. Section 4 lists a few examples of common exponential
families with conic natural parameter spaces. In Section 5, we define Minkowski’s diversity indices
for a normalized weighted set of probability distributions. Finally, section 6 concludes this work
and hints at perspectives.

2 Distances from the Minkowski’s inequality

Let us state Minkowski’s inequality:

Theorem 1 (Minkowski’s inequality). For p(x), q(x) ∈ Lα(µ) with α ∈ [1,∞), we have the follow-
ing Minkowski’s inequality:

(∫

|p(x) + q(x)|αdµ(x)

) 1

α

≤

(∫

|p(x)|αdµ(x)

) 1

α

+

(∫

|q(x)|αdµ(x)

) 1

α

, (5)

with equality holding only when q(x) = 0 (almost everywhere, a.e.), or when p(x) = λq(x) a.e. for
λ > 0 for α > 1.

The usual proof of Minkowski’s inequality relies on Hölder’s inequality [40, 39]. Following [39],
we define distances by measuring in several ways the tightness of the Minkowski’s inequality. When
clear from context, we shall write ‖ · ‖α for short instead of ‖ · ‖Lα(µ). Thus Minkowski’s inequality
writes as:

‖p + q‖α ≤ ‖p‖α + ‖q‖α. (6)

Minkowski’s inequality proves that the Lα-spaces are normed vector spaces.
Notice that when p(x) and q(x) are probability densities (i.e.,

∫
p(x)dµ(x) =

∫
q(x)dµ(x) = 1),

Minkowski’s inequality becomes an equality iff. p(x) = q(x) almost everywhere, for α > 1. Thus
we can define the following novel Minkowski’s distances between probability densities satisfying the
identity of indiscernibles:
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Definition 2 (Minkowski difference distance). For probability densities p, q ∈ Lα(µ), we define the
Minkowski difference Dα(·, ·) distance for α ∈ (1,∞) as:

Dα(p, q):=‖p‖α + ‖q‖α − ‖p + q‖α ≥ 0. (7)

Definition 3 (Minkowski log-ratio distance). For probability densities p, q ∈ Lα(µ), we define the
Minkowski log-ratio distance Lα(·, ·) for α ∈ (1,∞) as:

Lα(p, q):= − log
‖p+ q‖α

‖p‖α + ‖q‖α
= log

‖p‖α + ‖q‖α
‖p+ q‖α

≥ 0. (8)

By construction, all these Minkowski distances are symmetric distances: Namely, Mα(p, q) =
Mα(q, p), Dα(p, q) = Dα(q, p) and Lα(p, q) = Lα(q, p).

Notice that Lα(p, q) is scale-invariant
4: Lα(λp, λq) = Lα(p, q) for any λ > 0. Scale-invariance is

a useful property in many signal processing applications. For example, the scale-invariant Itakura-
Saito divergence (a Bregman divergence) has been successfully used in Nonnegative Matrix Factor-
ization [12] (NMF). Distance Dα(p, q) is homogeneous since Dα(λp, λq) = |λ|Dα(p, q) for any λ ∈ R

(and so is distance Mα(p, q)).

3 Closed-form formula for statistical mixtures of exponential fam-

ilies

In this section, we shall prove that Dα and Lα between statistical mixtures are in closed-form for
all integer exponents (and Mα for all even exponents) for mixtures of exponential families with
conic natural parameter spaces.

Let us first define the positively weighed geometric integral I of a set {p1, . . . , pk} of k probability
densities of Lα(µ) as:

I(p1, . . . , pk;α1, . . . , αk):=

∫

X

p1(x)
α1 . . . pk(x)

αkdµ(x), α ∈ R
k
+. (9)

An exponential family [7, 31] Et,µ is a set {pθ(x)}θ of probability densities wrt. µ which densities
can be expressed proportionally canonically as:

pθ(x) ∝ exp(t(x)⊤θ), (10)

where t(x) is a D-dimensional vector of sufficient statistics [7]. The term t(x)⊤θ can be writ-
ten equivalently as 〈t(x), θ〉, where 〈·, ·〉 denotes the scalar product on R

D. Thus the normalized
probability densities of Et,µ can be written as:

pθ(x) = exp
(

t(x)⊤θ − F (θ)
)

, (11)

where

F (θ):= log

∫

X

exp(t(x)⊤θ)dµ(x), (12)

4Like any distance based on the log ratio of triangle inequality gap induced by a homogeneous norm.
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is called the log-partition function (also called cumulant function [7] or log-normalizer [31]). The
natural parameter space is:

Θ:=

{

θ ∈ R
D :

∫

X

exp(t(x)⊤θ)dµ(x) < ∞

}

. (13)

Many common distributions (Gaussians, Poisson, Beta, etc.) belong to exponential families in
disguise [7, 31].

Lemma 4. For probability densities pθ1 , . . . , pθk belonging to the same exponential family Et,µ, we
have:

I(pθ1 , . . . , pθk ;α1, . . . , αk) = exp

(

F

(
k∑

i=1

αiθi

)

−

k∑

i=1

αiF (θi)

)

< ∞, (14)

provided that
∑k

i=1 αiθi ∈ Θ.

Proof.

I(pθ1 , . . . , pθk ;α1, . . . , αk) =

∫ k∏

i=1

(

exp
((

t(x)⊤θi − F (θi)
)))αi

dµ(x),

=

∫

exp









t(x)⊤(
∑

i

αiθi)−
∑

i

αiF (θi) + F

(
∑

i

αiθi

)

− F

(
∑

i

αiθi

)

︸ ︷︷ ︸

=0









dµ(x),

= exp

(

F

(
∑

i

αiθi

)

−
∑

i

αiF (θi)

)
∫

X

exp

(

t(x)⊤

(
∑

i

αiθi

)

− F

(
∑

i

αiθi

))

dµ(x)

︸ ︷︷ ︸

=1

,

= exp

(

F (
∑

i

αiθi)−
∑

i

αiF (θi)

)

,

since
∫

X
exp

(
t(x)⊤(

∑

i αiθi)− F (
∑

i αiθi)
)
dµ(x) =

∫

X
p∑

i αiθi(x)dµ(x) = 1, provided that

θ̄:=
∑

i αiθi ∈ Θ (and pθ̄ ∈ Et,µ).

In particular, the condition
∑

i αiθi ∈ Θ always holds when the natural parameter space Θ is a
cone. In the remainder, we shall call those exponential families with natural parameter space being
a cone, Conic Exponential Families (CEFs) for short. Note that when

∑

i αiθi 6∈ Θ, the integral
I(pθ1 , . . . , pθk ;α1, . . . , αk) diverges (that is, I(pθ1 , . . . , pθk ;α1, . . . , αk) = ∞).

Observe that for a CEF density pθ(x), we have pθ(x)
α in Lα(µ) for any α ∈ [1,∞).

Corollary 5. We have I(pθ1 , . . . , pθk ;α1, . . . , αk) = exp (F (
∑

i αiθi)−
∑

i αiF (θi)) < ∞ for prob-
ability densities belonging to the same exponential family with natural parameter space Θ being a
cone.

We also note in passing that I(p1, . . . , pk;α1, . . . , αk) < ∞ for α ∈ R
k for probability densities

belonging to the same exponential family with natural parameter space being an affine space (e.g.,
Poisson or isotropic Gaussian families [32]).
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Let us define:

JF (θ1, . . . , θk;α1, . . . , αk):=
∑

i

αiF (θi)− F

(
∑

i

αiθi

)

. (15)

This quantity is called the Jensen diversity [30] when α ∈ ∆k (the (k − 1)-dimensional standard
simplex), or Bregman information5 in [5]. Although the Jensen diversity is non-negative when
α ∈ ∆k, this Jensen diversity of Eq. 15 maybe negative when α ∈ R

k
+. When α ∈ R

k
+, we thus call

the Jensen diversity the generalized Jensen diversity. It follows that we have:

I(pθ1 , . . . , pθk ;α1, . . . , αk) = exp (−JF (θ1, . . . , θk;α1, . . . , αk)) (16)

The CEFs include the Gaussian family, the Wishart family, the Binomial/multinomial family,
etc. [7, 31, 28].

Let us consider a finite positive mixture m̃(x) =
∑k

i=1 wipi(x) of k probability densities, where
the weight vector w ∈ R

k
+ are not necessarily normalized to one.

Lemma 6. For a finite positive mixture m̃(x) with components belonging to the same CEF,
‖m̃‖Lα(µ) is finite and in closed-form, for any integer α ≥ 2.

Proof. Consider the multinomial expansion m̃(x)α obtained by applying the multinomial theo-
rem [6]:

m̃(x)α =
∑

∑k
i=1

αi=α
αi∈N

(
α

α1, . . . , αk

) k∏

j=1

(wjpj(x))
αj , (17)

where (
α

α1, . . . , αk

)

:=
α!

α1!× . . .× αk!
, (18)

is the multinomial coefficient [4]. It follows that:

∫

m̃(x)αdµ(x) =
∑

∑
i αi=α
αi∈N

(
α

α1, . . . , αk

)




k∏

j=1

w
αj

j



 I(p1, . . . , pk;α1, . . . , αk). (19)

Thus the term
∫
m̃(x)αdµ(x) amounts to a positively weighted sum of integrals of monomi-

als that are positively weighted geometric means of mixture components. When pi = pθi , since
I(pθ1 , . . . , pθk ;α1, . . . , αk) < ∞ using Eq. 5, we conclude that m̃ ∈ Lα(µ) for α ∈ N, and we get the
formula:

‖m̃‖Lα(µ) =







∑

∑
i αi=α
αi∈N

(
α

α1, . . . , αk

)




k∏

j=1

w
αj

j



 exp (−JF (θ1, . . . , θk;α1, . . . , αk))







1

α

, (20)

for α ∈ N.

5Because
∑

i αiBF (θi : θ̄) = JF (θ1, . . . , θk;α1, . . . , αk) for the barycenter θ̄ =
∑

i αiθi, where BF (θ : θ′) =
F (θ)− F (θ′)− (θ − θ′)⊤∇F (θ′) is a Bregman divergence.
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A naive multinomial expansion of m̃(x)α yields kα terms that can then be simplified. Using the
multinomial theorem, there are

(k+α−1
α

)
integral terms in the formula of

∫
(
∑k

i=1wipi(x))
αdµ(x).

This number corresponds to the number of sequences of k disjoint subsets whose union is {1, . . . , α}
(also called the number of ordered partitions but beware that some sets may be empty).

The multinomial expansion can be calculated efficiently using a generalization of Pascal’s tri-
angle, called Pascal’s simplex [26], thus avoiding to compute from scratch all the multinomial
coefficients.

We have the following generalized Pascal’s recurrence formula for calculating the multinomial
coefficients:

(
α

α1, . . . , αk

)

=

k∑

i=1

(
α− 1

α1, . . . , αi − 1, . . . , αk

)

, (21)

with the terminal cases
( α
α1,...,αk

)
= 0 if there exists an αi < 0. Also by convention, we set

conveniently
( α
α1,...,αk

)
= 0 if there exists αi > α.

An efficient way to implement the multinomial expansion using nested iterative loops follows
from this identity:

(
k∑

i=1

xi

)α

=

α∑

α1=0

α1∑

α2=0

. . .

αk−2∑

αk−1=0

(
α

α1

)(
α1

α2

)

. . .

(
αk−1

αk−2

)

xα−α1

1 xα1−α2

2 . . . x
αk−2−αk−1

k−1 x
αk−1

k . (22)

We are now ready to show when the statistical Minkowski’s distances Mα,Dα and Lα are in
closed-form for mixtures of CEFs using Lemma 6.

Theorem 7 (Closed-form formula for Minkowski’s distances). For mixtures m =
∑k

i=1wipθi and

m′ =
∑k′

j=1w
′
jpθ′j of CEFs Eµ,t, Dα and Lα admits closed-form formula for integers α ≥ 2, and Mα

is in closed-form when α ≥ 2 is an even positive integer.

Proof. For Dα and Lα, it is enough to show that ‖m‖Lα(µ), ‖m
′‖Lα(µ) and ‖m+m′‖Lα(µ) are all in

closed-form. This follows from Lemma 6 by setting m̃ to be m, m′ and m+m′, respectively. The

overall number of generalized Jensen diversity terms in the formula of Dα or Lα is O
((k+k′+α−1

α

))

.

Now, consider distance Mα. To get rid of the absolute value in Mα for even integers α, we
rewrite Mα as follows:

Mα(m,m′) = ‖m−m′‖Lα(µ) =

(∫

|m(x)−m′(x)|αdµ(x)

) 1

α

,

=

(∫ ((
m(x)−m′(x)

)2
)α

2

dµ(x)

) 1

α

.

Let m̃(x) = (m(x)−m′(x))2. We have:

m̃(x) = (m(x)−m′(x))2, (23)

= m(x)2 +m′(x)2 − 2m(x)m′(x), (24)

=

(
k∑

i=1

wipθi(x)

)2

+





k′∑

j=1

w′
jpθ′j(x)





2

− 2

k∑

i=1

k′∑

j=1

wiw
′
jpθi(x)pθ′j (x). (25)
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We have the density products pθ,θ′ :=pθpθ′ = I(pθ, pθ′ ; 1, 1) ∈ Lα
2

(µ) (using Lemma 6) for any

θ, θ′ ∈ Θ and α ≥ 2. When α = 2, α
2 = 1, and we easily reach a closed-form formula for M2(m,m′).

Otherwise, let us expand all the terms in Eq. 25, and rewrite m̃(x) =
∑K

l=1w
′′
l pθl,θ′l . Now, a key

difference is that w′′
l ∈ R, and not necessarily positive. Nevertheless, since α

2 ∈ N, we can still

use the multinomial theorem to expand m̃(x)
α
2 , distribute the integral over all terms, and compute

elementary integrals I(pθ1,θ′1 , . . . , pθK ,θ′
K
;α′

1, . . . , α
′
K) with

∑K
l=1 α

′
i =

α
2 in closed-form. Thus Mα is

available in closed-form for mixtures of CEFs for all even positive integers α ≥ 2. The number of

terms in the Mα formula is O
((

max(k2,k′2)+α−1
α

))

.

Note that there exists a generalization6 of the binomial theorem to real exponents α ∈ R called
Newton’s generalized binomial theorem using an infinite series of general binomial coefficients:

(x1 + x2)
α =

∞∑

i=0

(
α

i

)

xα−i
1 xi2, (26)

with the generalized binomial coefficient defined by:

(
α

i

)

:=
α(α − 1) . . . (α− i+ 1)

i!
=

Γ(α+ 1)

Γ(α− i+ 1)Γ(i + 1)
,

where Γ(x):=
∫
∞

0 tx−1e−tdt is the Gamma function extending the factorial: Γ(n) = (n− 1)!. Equa-
tion 26 is only valid whenever the infinite series converge. That is, for |x1| ≥ |x2|. When extending
to mixture densities (i.e., (w1p1(x) +w2p2(x))

α) and taking the integral, we therefore need to split
the integral into two integrals depending on whether w1p1(x) ≥ w2p2(x), or not. Furthermore, we
need to compute these integrals on truncated support domains: This becomes very tricky as the
dimension of the support increase [14].

4 Some examples of conic exponential families

Let us report a few conic exponential families with their respective canonical decompositions. The
measure µ is usually either the Lebesgue measure on the Euclidean space (i.e., dµ(x) = dx), or the
counting measure.

• Bernoulli/multinomial families. The Bernoulli density is p(x;λ) = λx(1 − λ)1−x with
λ ∈ (0, 1) = ∆1, for X = {0, 1}. The natural parameter is θ = log λ

1−λ and the conic natural

parameter space is Θ = R. The log-partition function is F (θ) = log(1 + eθ). The sufficient
statistics is t(x) = x.

The multinomial density generalizes the Bernoulli and the binomial densities. Here, we con-
sider the categorical distribution also called “multinoulli” distribution. The multinoulli den-
sity is given by:

p(x;λ1, . . . , λd) =

d∏

i=1

λxi

i ,

6There also exists a generalization of the multinomial theorem to real exponents, however, this is much less known
in the literature (see http://fractional-calculus.com/multinomial_theorem.pdf).
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where λ ∈ ∆d, the (d−1)-dimensional standard simplex. We have X = {0, 1}d. The sufficient
statistic vector is t(x) = (x1, . . . , xd−1). The natural parameter is a (d−1)-dimensional vector

with natural coordinates θ =
(

log λ1

λd
, . . . , log

λd−1

λd

)

. The conic natural parameter space is

Θ = R
d−1 (ie., a non-pointed cone). The log-partition function is F (θ) = log(1 +

∑d−1
i=1 eθi).

• Zero-centered Laplacian family. The density is p(x;σ) = 1
2σ e

−
|x|
σ and the sufficient

statistic is t(x) = |x|. The natural parameter is θ = − 1
σ with the conic parameter space

Θ = (−∞, 0) = R−−. The log-normalizer is F (θ) = log( 2
−θ ). See [3] for an application of

Laplacian mixtures.

• Multivariate Gaussian family. The probability density of a d-variante Gaussian distribu-
tion is:

p(x;µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

(

−
(x− µ)TΣ−1(x− µ)

2

)

, x ∈ R
d

where |Σ| denotes the determinant of the positive-definite matrix Σ. The natural parameter
consists in a vector part θv and a matrix part θM : θ = (θv, θM ) = (Σ−1µ,Σ−1). The conic
natural parameter space is Θ = R

d × Sd
++, where Sd

++ denotes the cone of positive definite
matrices of dimension d× d. The sufficient statistics are (x, xx⊤). The log-partition function
is:

F (θ) =
1

2
θTv θ

−1
M θv −

1

2
log |θM |+

d

2
log 2π.

• Wishart family. The probability density is

p(X;n, S) =
|X|

n−d−1

2 e−
1

2
tr(S−1X)

2
nd
2 |S|

n
2 Γd

(
n
2

) , X ∈ Sd
++

with S ≻ 0 denoting the scale matrix and n > d − 1 denoting the number of degrees of
freedom, where Γd is the multivariate Gamma function:

Γd(x) = πd(d−1)/4
d∏

j=1

Γ (x+ (1− j)/2) .

tr(X) denotes the trace of matrix X. The natural parameter is composed of a scalar θs
and a matrix part θM : θ = (θs, θM ) = (n−d−1

2 , S−1). The conic natural parameter space is
Θ = R+ × Sd

++. The sufficient statistics are (log |X|,X). The log-partition function is:

F (θ) =
(2θs + d+ 1)d

2
log 2 +

(

θs +
d+ 1

2

)

log |θM |+ log Γd

(

θs +
d+ 1

2

)

.

See [17] for an application of Wishart mixtures.

5 Minkowski’s diversity index

Informally speaking, a diversity index is a quantity that measures the variability of elements in
a data set (i.e., the diversity of a population). For example, the (sample) variance of a (finite)
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point set is a diversity index. Point sets uniformly filling a large volume have large variance (and a
large diversity index) while point sets with points concentrating to their centers of mass have low
variance (and a small diversity index).

Recall that the Jensen diversity index [34] of a normalized weighted set {p1 = pθ1 , . . . , pn = pθn}
of densities belonging to the same exponential family (also called information radius [23] or Bregman
information [5, 36]) is defined for a strictly convex generator F by:

JF (θ1, . . . , θn;w1, . . . , wn):=

n∑

i=1

wiF (θi)− F

(
n∑

i=1

wiθi

)

≥ 0.

When F (θ) = 1
2 〈θ, θ〉, we recover from JF the variance.

We shall consider finite mixtures [24, 5] with linearly independent component densities. Using
Minkowski’s inequality iteratively for f1, . . . , fn ∈ Lα(µ), we get:

(
∫
∣
∣
∣
∣
∣

n∑

i=1

fi(x)

∣
∣
∣
∣
∣

α

dµ(x)

) 1

α

≤

n∑

i=1

(∫

|fi(x)|
αdµ(x)

) 1

α

. (27)

When α > 1, equality holds when the fi’s are proportional (a.e. µ). By setting fi = wipi, we define
the Minkowski’s diversity index:

Definition 8 (Minkowski’s diversity index). Define the Minkowski diversity index of n weighted
probability densities of Lα(µ) for α > 1 by:

JM
α (p1, . . . , pn;w1, . . . , wn) :=

n∑

i=1

wi

(∫

pi(x)
αdµ(x)

) 1

α

−

(
∫
∣
∣
∣
∣
∣

∑

i

wipi(x)

∣
∣
∣
∣
∣

α

dµ(x)

) 1

α

,(28)

=

n∑

i=1

wi‖pi‖α −

∥
∥
∥
∥
∥

n∑

i=1

wipi

∥
∥
∥
∥
∥
α

≥ 0. (29)

It follows a closed-form formula for the Minkowski’s diversity index of a weighted set of distri-
butions (ie., a mixture) belonging to the same CEF:

Corollary 9. The Minkowski’s diversity index of n weighted probability distributions belonging to
the same conic exponential family is finite and admits a closed-form formula for any integer α ≥ 2.

6 Conclusion and perspectives

Designing novel statistical distances which admit closed-form formula for Gaussian mixture models
is important for a wide range of applications in machine learning, computer vision and signal
processing [18]. In this paper, we proposed to use the Minkowski’s inequality to design novel
statistical symmetric Minkowski distances by measuring the tightness of the inequality either as
an arithmetic difference or as a log-ratio of the left-hand-side and right-hand-side of the inequality.
We showed that these novel statistical Minkowski distances yield closed-form formula for mixtures
of exponential families with conic natural parameter spaces whenever the integer exponent α ≥ 2.
In particular, this result holds for Gaussian mixtures, Bernoulli mixtures, Wishart mixtures, etc.
We termed those families as Conic Exponential Families (CEFs). We also reported a closed-form
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formula for the ordinary statistical Minkowski distance for even positive integer exponents. Finally,
we defined the Minkowski’s diversity index of a weighted population of probability distributions (a
mixture), and proved that this diversity index admits a closed-form formula when the distributions
belong to the same CEF.

Let us conclude by listing the formula of the statistical Minkowski distances for α = 2 for
comparison with the Cauchy-Schwarz (CS) divergence:

M2(m1,m2) := ‖m1 −m2‖2,

D2(m1,m2) := ‖m1 +m2‖2 − (‖m1‖2 + ‖m2‖2),

L2(m1,m2) := − log
‖m1 +m2‖2

‖m1‖2 + ‖m2‖2
,

CS(m1,m2) := − log
‖m1m2‖1

‖m1‖2‖m2‖2
= − log

〈m1,m2〉2
‖m1‖2‖m2‖2

,

where 〈f, g〉2 =
∫
f(x)g(x)dµ(x) for f, g ∈ L2(µ). Note that for α = 2, L2(µ) is a Hilbert space

when equipped with this inner product. We get closed-form formula for these statistical Minkowski’s
distances between mixtures m1 and m2 of CEFs, as well as for the Cauchy-Schwarz divergence. All
those statistical distances can be computed in quadratic time in the number of mixture components.

Selecting a proper divergence from a priori first principles for a given application is a paramount
but difficult task [9]. Often one is left by checking experimentally the performances of a few
candidate divergences in order to select the a posteriori ‘best’ one. We hope that these newly
proposed statistical Minkowski’s distances, Dα and scale-invariant Lα, will prove experimentally
useful in a number of applications ranging from computer vision to machine learning and signal
processing.

Additional material is available from
https://franknielsen.github.io/MinkowskiStatDist/

Acknowledgments: The author would like to thank Gaëtan Hadjeres for his careful reading and
feedback.
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