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Abstract

Inspired by Souriau’s symplectic generalization of the Maxwell-Boltzmann-Gibbs equi-

librium in Lie group thermodynamics, we investigate a spacetime-covariant formalism for

statistical mechanics and thermodynamics in the multi-symplectic framework for relativistic

field theories. A general-covariant Gibbs state is derived, via a maximal entropy principle

approach, in terms of the covariant momentum map associated with the lifted action of

the diffeomorphisms group on the extended phase space of the fields. Such an equilibrium

distribution induces a canonical spacetime foliation, with a Lie algebra-valued generalized

notion of temperature associated to the covariant choice of a reference frame, and it describes

a system of fields allowed to have non-vanishing probabilities of occupying states different

from the diffeomorphism invariant configuration. We focus on the case of parametrized first

order field theories, as a concrete simplified model for fully constrained field theories sharing

fundamental general covariant features with canonical general relativity. In this setting, we

investigate how physical equilibrium, hence time evolution, emerge from such a state via a

gauge-fixing of the diffeomorphism symmetry.
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1 Introduction

In the attempt to shed light on the nature of gravity at the quantum scale, and to understand

how continuum spacetime and its general-relativistic dynamics emerge in the classical regime,

both string theory [1] and non-perturbative approaches to quantum gravity [2] have incorpo-

rated a pletora of concepts and tools from statistical mechanics, condensed matter physics and

information theory, with an exceptional interdisciplinary effort. Nevertheless, a general covariant
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framework for describing the statistical fluctuations of the gravitational field, hence of spacetime

geometry, is still missing, the very definition of a spacetime covariant formulation for statisti-

cal mechanics being a thorny open issue [3]. At the heart of the problem lies the conceptual

clash of Einstein’s general covariant scheme, characterised by systems with vanishing canonical

Hamiltonian, with statistical mechanics, whose classical formulation grounds on the notion of

Hamiltonian time flow and energy [4].

Important insights towards a general covariant formulation of statistical mechanics came from

the thermal time hypothesis framework [5], inspired by the Tomita-Takasaki theorem in alge-

braic quantum field theory [6]. In this framework, timeless evolution is realised by the modular

one-parameter flow of automorphisms of the covariant space algebra of the system, which can

be induced by any modular thermal state in the algebra of the gauge invariant observables of

the theory. The thermal time hypothesis then reinterprets the relation between Gibbs states

and time flow generated by H form a covariant phase space viewpoint, by considering any equi-

librium state as generating its own time flow instead of being determined by the time flow.

This leaves open the problem of characterizing the states that are in physical equilibrium, as

any state is stationary with respect to its own flow. In [7], a physical characterisation of such

general covariant Gibbs states has been proposed to be associated with states whose thermal

time is a flow in spacetime.

Most work in this direction [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] grounded on these ideas,

seeking for new physical characterizations of equilibrium, by means of a covariant extension of

the fundamental postulates of ordinary statistical physics. These results have been so far lim-

ited to simple low dimensional parametrized mechanical systems, and a complete field-theoretic

formulation of the problem is missing [7, 17].

In this work, we consider the problem of the physical characterisation of a general covariant

Gibbs’ equilibrium within a multi-symplectic framework for relativistic field theories, by intro-

ducing an extended off-shell, epistemic notion of equilibrium [20], built in terms of the conserved

covariant momentum map induced by the Hamiltonian flow of the diffeomorphism symmetry

group on the extended phase space of the theory.

In Einstein’s theory of gravity, as in any parametrized classical field theory, dynamics is fully

characterized by the initial value constraints and inherently related to the gauge freedom of

the theory [21, 22, 23, 24, 25, 26, 27]. Such an intimate relation between gauge symmetry

and dynamics, between covariant and canonical formulation, is encoded in the notion of co-

variant momentum map in a multi-symplectic formalism [21, 22, 23, 28, 29]. For (first order)

parametrized field theories, canonical initial value constraints coincide with the vanishing of the

instantaneous reduction of the covariant momentum map [21, 22, 23], associated to the action
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of the gauge group of the theory on its extended phase-space. Such induced energy-momentum

map appears to encode all the dynamical information carried by the theory [21, 22, 23]. In

the canonical formalism, first class constraints generating the diffeomorphism symmetry are en-

coded in the normal and tangential components of the instantaneous reduction of the covariant

momentum map so that the constraint surface is identified with its zero level set [22, 23, 26, 27].

In the ADM formulation of gravity, for instance, the super-hamiltonian and super-momenta are

the components of such energy-momentum map, reflecting the gauge symmetry (diffeomorphism

covariance) of the full theory in the instantaneous setting [30, 31].

In general, group-theoretic terms, the notion of momentum map is associated to a natural gen-

eralization of the Hamiltonian function, which comprises all conserved charges associated to

the symplectic action of some dynamical group on a given phase space [32]. In this terms, the

momentum map can be naturally used to generalize the Maxwell-Boltzmann-Gibbs approach

to thermodynamics [33] to the case where the energy function is vector-valued and not just

restricted to time translation symmetry. Along this line, in the 70’s, Souriau first proposes a

geometric Lie group-covariant formulation of thermodynamics, building on the theory of sym-

plectic momenta, cohomology and distribution tensors. The idea goes like follows: Consider a

connected symplectic manifold (M, ω) (the manifold of motions in most cases) and a connected

Lie group G acting on M by a Hamiltonian action Ψ1. Let g be the Lie algebra of G, g∗ be

its dual space, and J : M→ g∗ be a momentum map of the G-action Ψ, that is for any ξ ∈ g

the function J(ξ) : M → R by J(ξ)(m) = 〈J(m), ξ〉 is the Hamiltonian function associated to

the vector field ξM = ψ(ξ) ∈ X(M) generating the action ψ of g on M. A statistical state on

(M, ω) is simply a probability law µ on M defined by the product of the Liouville density of

M with a classical distribution function [32]

µ(A) =

∫

A
ρ(m)ωn(m) (1.1)

for each Borel subset A of M, with ρ :M→ R ([0,+∞[) being a continuous density function,

such that
∫
M ρ(m)ωn(m) = 1. The entropy of the statistical state µ is defined to be the averaged

1The action Ψ : G ×M →M of a Lie group G on a symplectic manifold (M, ω) is said to be symplectic if,

for any g ∈ G, Ψg :M→M is a symplectomorphism, i.e. a smooth diffeomorphism of M such that Ψ∗gω = ω.

The associated action ψ : g→ X(M) of the Lie algebra g of G on M is the one parameter group action induced

by Ψ via the fundamental vector fields associated to each Lie algebra element ξ ∈ g satisfying

ψ(ξ)(m) =
d

dλ

(
Ψexp(λξ) ·m

) ∣∣∣
λ=0

where ψ(ξ) ∈ X(M) is a vector field on M and m ∈ M. A symplectic G-action Ψ is said to be Hamiltonian if

the associated Lie algebra action ψ is Hamiltonian, that is there exists a smooth real function f on M such that

iψ(ξ)ω = −df .
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value S of − ln ρ with respect ρ,

S(ρ) = −
∫

M
ρ(m) log (ρ(m))ωn(m) , (1.2)

with m log(m) = 0 if m = 0, and it measures the amount of uncertainty (or broadness) repre-

sented by the probability density ρ. For a given constant mean value of the momentum map

J , thermodynamic equilibria µeq are states which maximize the entropy [20, 33], and such that

S(ρeq) is stationary with respect to all infinitesimal smooth variations of the probability density.

The quantity

Z(ξ) =

∫

M
e−〈J(m),ξ〉 ωn, (1.3)

defines a generalized partition function, associated to a Gibbs distribution

ρ(ξ) =
1

Z(ξ)
e−〈J(m),ξ〉, (1.4)

which is invariant under the action of any one-parameter subgroup of G onM. The Hamiltonian

function 〈J, ξ〉 : M → R is the so-called comomentum map. As for the standard case of time

translations, generalised free energy F and internal energy Q can be defined as smooth functions

of the variable ξ ∈ g, taking value in R and in g∗, respectively. In this sense, the (co)momentum

map provides a natural vector-valued generalisation of the Hamiltonian function, retaining the

operational information of all conserved charges associated to the symplectic action of a dynam-

ical group on a given system’s phase space. In particular, this leads to a remarkable covariant

generalization of Gibbs’s equilibrium as soon as we consider the action of the symmetry group

of the system (e.g. Galileo, Poincaré) on its manifold of motions [34].

Souriau’s geometric generalisation of Gibbs equilibrium essentially relies on the symplectic char-

acter of the phase space and on the Hamiltonian nature of the group action. Such a phase space

coincides with the fully constrained phase space of the system, thereby providing an on-shell

definition of covariant equilibrium state, analogous to the one later developed by the thermal

time hypothesis.

In this work, we explore a radical conceptual extension of Souriau’s Lie group thermodynamics

to the framework of general covariant, or reparametrization invariant, field theories, where the

covariant symmetry group of the system is gauge and the symplectic phase space consists of

the full extended phase space of fields. We focus on parametrized field theories considered as

paradigmatic models for diffeomorphism-covariant theories sharing important features with gen-

eral relativity. In particular, to emphasise on the key geometric ingredients for our analysis, we

work in the multi-symplectic framework for first order parametrized field theories, where a no-

tion of covariant (multi)momentum map associated to the action of spacetime diffeomorphisms

can be constructed. In absence of boundaries in the underlying spacetime base manifold, the
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pre-symplectic nature of both the constraint surface and the space of solutions of the field equa-

tions prevents us from representing the diffeomorphism group via a Poisson algebra of functions

on the on-shell field configurations as the corresponding co-momentum Hamiltonian would be

trivial [35]. This issue requires to move the entire analysis at the off-shell level. Here, build-

ing on the notion of covariant (multi)momentum map and on the geometric characterization

of the parametrization procedure introduced in [36, 37], where diffeomorphisms are promoted

to dynamical fields themselves (covariance fields), we are able to define a spacetime covariant

notion of equilibrium state for fully constrained field theories. The representation of the algebra

of diffeomorphisms on the parametrized phase space of fields is achieved by taking into account

the lifted action of spacetime diffeomorphisms on the embeddings naturally induced by that on

the covariance fields. As a side result, this also allows us to recover the procedure introduced

by Isham and Kuchař in [38] for the case of a scalar field.

The paper is organized as follows. In Sec. 2, we present the main geometric setup on which

our analysis is based. After recalling the multi-symplectic formulation for classical field theories

(Sec. 2.1) and the main steps of the parametrization procedure (Sec. 2.2), we elaborate this

framework for first order parametrized field theories in Sec. 2.3 where the notion of covariant

multi-momentum map is discussed. Sec. 2.4 focuses on the corresponding canonical formalism

and the appearance of constraints in such a framework, thus providing the necessary preliminar-

ies for the representation of spacetime diffeomorphisms via a covariant momentum map on the

parametrized phase space of fields discussed in Sec. 2.5. With this framework at our disposal,

the extension of Souriau’s Lie group themodynamics to parametrized field theories – that we call

covariant gauge group thermodynamics – is then discussed in Sec. 3. The covariant notion of

Gibbs equilibrium state as well as the corresponding generalized thermodynamic functions are

constructed in Sec. 3.1 and 3.2, respectively. Furthermore, in Sec. 3.3 we explore the possibility

of a microcanonical imposition of the constraints from a statistical perspective by considering

the thermodynamic limit, and discuss a generalized second law in Sec. 3.4. Finally, in Sec. 4 we

consider some explicit check for our formalism. In particular, in Sec. 4.2 we investigate how time

evolution equilibrium emerges from a suitable gauge-fixing of diffeomorphism symmetry, while

in Sec. 4.3 we discuss analogies and differences with thermal time hypothesis and elaborate on

the spacetime interpretation of the thermal flow associated to the covariant Gibbs state. Some

future perspectives are reported in Sec. 5.
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2 Multisymplectic Formulation for Generally Covariant Field

Theories

The first step in our construction consists in defining a suitable covariant Hamiltonian framework

for our approach, where the key momentum map construction can be generalized in spacetime

covariant terms, for the case of first order parametrized field theories. The content is based on the

seminal works [21, 22, 23] and references within to which we refer for a more detailed exposition.

Other works on this topic which include also different starting points are [39, 40, 41, 42].

2.1 Setup

Let X be an oriented (n+ 1)-dimensional manifold, which in many examples is spacetime, and

let Y πXY−−−→ X be a finite-dimensional fiber bundle over X whose fibers Yx over x ∈ X have

dimension N . This is called the configuration bundle and is the field theoretic analogue of

the configuration space in classical mechanics. Physical fields correspond to sections of this

bundle. A set of local coordinates (xµ, yA) on Y is provided by the n+1 local coordinates

xµ, µ = 0, . . . , n, on X and the N fiber coordinates yA, A = 1, . . . , N , which represent the

field components at a given point x ∈ X . As discussed in [43, 44], this notion of extended

configuration space for field theories has a nice operational motivation based on the observation

that coordinates of Y (i.e., field values and spacetime positions) are the partial observables of the

theory [45]. Indeed, one needs N measuring devices to measure the components of the field at a

given point x ∈ X , and n+ 1 devices to determine x2 thus resulting in a (n+N+1)-dimensional

configuration space. A point in Y represents a correlation between these observables, that is, a

possible outcome of a simultaneous measurement of the partial observables.

The Lagrangian density for a first order classical field theory is given by

L : J1(Y) −→ Λn+1(X ) , (2.1)

where J1(Y) is the first jet bundle3 of Y and Λn+1(X ) is the space of (n+ 1)-forms on X . The

first jet bundle J1(Y) of Y here plays the role of the field-theoretic analogue of the tangent

bundle of classical mechanics4. Local coordinates (xµ, yA) on Y induce coordinates vAµ on the

2To determine an event in a n+1-dimensional spacetime we need one clock and n devices giving us the distance

from n reference objects.
3For higher order theories, a kth-order Lagrangian density will be defined on the kth jet bundle Jk(Y) of Y

[46].
4In this case Y = R×Q is the extended configuration space regarded as an R-bundle over Q, and J1(Q× R)

is isomorphic to the bundle TQ× TR.
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fibers of J1(Y) so that the first jet prolongation j1φ of a section φ of the bundle Y πXY−−−→ X reads

as

j1φ : xµ 7−→ (xµ, yA, vAµ ) = (xµ, yA(x), yA,µ(x)) , (2.2)

where yA,µ = ∂µy
A and ∂µ = ∂/∂xµ. The Lagrangian then reads

L (j1φ) = L
(
xµ, yA(x), yA,µ(x)

)
dn+1x , (2.3)

where dn+1x = dx0 ∧ · · · ∧ dxn is the volume form on X .

By introducing the multimomenta pµA and the covariant Hamiltonian p defined via Legendre

transformation as

pµA =
∂L

∂vAµ
, p = L− ∂L

∂vAµ
vAµ , (2.4)

the field-theoretic analogue of the phase space of classical mechanics is provided by the so-

called multiphase space Z defined as the sub-bundle of 2-horizontal (n+1)-forms on Y whose

elements can be uniquely written in terms of the fiber coordinates (p, pAµ ) as

z = p dn+1x+ pµAdyA ∧ dnxµ , (2.5)

with

dnxµ = i∂µdn+1x , (2.6)

so that the contraction iV iW z with any two vertical vector fields V = V A∂/∂yA, W = WA∂/∂yA

on Y vanishes. As proved in [21], the space Z is canonically isomorphic to the dual jet bundle

J1(Y)∗, the latter playing the role of the field-theoretic analogue of the cotangent bundle.

In complete analogy to standard symplectic mechanics [47, 48], the canonical Poincaré-

Cartan (n+ 1)-form Θ on Z is given by

Θ = p dn+1x+ pµAdyA ∧ dnxµ , (2.7)

and the canonical (n+ 2)-form Ω on Z is then defined by

Ω = −dΘ = dyA ∧ dpµA ∧ dnxµ − dp ∧ dn+1x . (2.8)

A remarkable feature of this formalism is that for each field component yA there are multiple

momenta pµA, spatial in addition to temporal. The pair (Z,Ω) is an example of multisymplec-

tic manifold5 and the usual definitions of classical mechanics on the extended phase space are

5According to [21, 49, 50], a multisymplectic manifold (M,Ω) is a manifold endowed with a closed non-

degenerate k-form Ω (k = n+ 2 in our case), i.e., such that dΩ = 0 and iV Ω 6= 0 for any nonzero tangent vector

V on M.
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recovered when X is one-dimensional (i.e., n = 0) as reported into the following table which

summarizes the analogies between classical symplectic mechanics and the multisymplectic for-

mulation of classical field theories:

Classical Mechanics (n = 0,X ≡ R) Field Theory (n > 0,dimX = n+ 1)

extended configuration space configuration bundle over spacetime

Y = R×Q Y πXY−−−→ X

local coordinates on Y local coordinates on Y
(t, qA) (xµ, yA)

extended phase space multiphase space

P = T ∗Y = T ∗R× T ∗Q J1(Y)∗ ∼= Z ⊂ Λn+1(Y)

local coordinates on P local coordinates on Z
(t, qA, E, pA) (xµ, yA, p, pµA)

Poincaré-Cartan 1-form on P Poincaré-Cartan (n+1)-form on Z
Θ = pAdqA + Edt Θ = pdn+1x+ pµAdyA ∧ dnxµ

symplectic 2-form on P multisymplectic (n+2)-form on Z
Ω = dqA ∧ dpA − dE ∧ dt Ω = dyA ∧ dpµA ∧ dnxµ − dp ∧ dn+1x

2.2 Parametrization and Covariance Fields

As it is well known from the pioneering work of Dirac [51], further developed by Kuchař and

Isham [38, 52, 53], field theories with a fixed background metric can be made generally co-

variant, i.e., with the spacetime diffeomorphism group as symmetry group, by means of the

so-called parametrization procedure. Roughly speaking, this amounts to introduce the diffeo-

morphisms themselves as new dynamical fields so that the covariance group of the theory can

be enlarged while leaving the solution space unchanged. A precise geometric reformulation of

the parametrization procedure within the context of multi-symplectic field theories, which pro-

vides an intrinsic extension and refinement of the idea of treating coordinate changes as fields

(“parametrization”), was developed by Castrillón López, Gotay and Marsden in [36, 37]. The

main steps of the construction are the following:
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1) One introduces the so-called covariance fields which are just (oriented) diffeomorphisms

of X reinterpreted as sections η : X → X̃ of the bundle X̃ ×X π̃−→ X where (X̃ , g) is a copy

the (spacetime) base manifold.

2) Regarding η as new dynamical fields, the configuration bundle Y is then replaced by the

fibered product Ỹ = Y ×X (X̃ ×X ) whose sections are thought of as pairs (φ, η) according

to the diagram

Y ×X (X̃ × X )

πXỸ

��
X

φ

88

OL
B

1
� 


|
r

η

ff

o r
|




�
1

B
L

i.e.

Y ×X (X̃ × X )

π`

yyrrrrrrrrrrrr

πXỸ

��

πr

''OOOOOOOOOOOOO

Y

πXY
))

X̃ × X

π̃ttX

φ
ii

F
H

KMOQS
η

44

t
r

p n l k i

where, denoting coordinates on X̃ by ua (a = 0, . . . , n), π` : Ỹ → Y and πr : Ỹ → X̃ ×X are

the projections on the first and second factor of Ỹ respectively acting as π` : (xµ, yA, ua) 7→
(xµ, yA) and πr : (xµ, yA, ua) 7→ (xµ, uα), and πXY(y) = π̃(u).

3) The Lagrangian density L of the starting theory is modified by introducing the new

Lagrangian density

L̃ : J1(Ỹ) −→ Λn+1(X ) , (2.9)

defined as

L̃ (j1φ, j1η) := L (j1φ, η∗g) . (2.10)

which, denoting coordinates on J1(Ỹ) by (xµ, yA, vAµ , u
a, uaµ) with uaµ the jet coordinates

associated to ua, reads

L̃ (xµ, yA, vAµ , u
a, uaµ) = L (xµ, yA, vAµ ;Gµν) , (2.11)

where

Gµν ≡ (η∗g)µν = ηa,µ η
b
,ν gab ◦ η = uaµ u

b
ν gab ◦ η . (2.12)

Let then αX ∈ Diff(X ), we denote by αY ∈ Aut(Y) its lift to Y. This can be extended to an

action by bundle automorphisms on Ỹ by requiring that Diff(X ) acts trivially on X̃ , i.e.

αX̃ : X̃ × X −→ X̃ × X by (u, x) 7−→ (u, αX (x)) . (2.13)

The induced action on the space Ỹ ≡ Γ(X , Ỹ) of sections of Ỹ is then given by

αỸ (φ, η) = (αY (φ), αX̃ (η)) , (2.14)
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where

αY (φ) = αY ◦ φ ◦ α
−1
X , φ ∈ Y ≡ Γ(X ,Y) (2.15)

generalizes the usual push-forward action on tensor fields, and

αX̃ (η) = η ◦ α−1
X , (2.16)

is the (left) action by composition on sections of the trivial bundle X̃ × X . The modified field

theory on J1(Ỹ) with Lagrangian density (2.10) is Diff(X )-covariant. Indeed, the Lagrangian

density (2.10) is Diff(X )-equivariant, i.e. [36, 37]

L̃
(
j1(αY (φ)), j1(αX̃ (η))

)
= (α−1

X )∗
[
L̃ (j1φ, j1η)

]
. (2.17)

To sum up, the key point of the construction is that now the fixed background metric g is

no longer thought of as living on X , but rather just as a geometric object on the copy X̃ in the

fiber of the extended configuration bundle Ỹ. On the other hand, the metric variable G = η∗g

on X inherits a dynamical character via the covariance field η. The true dynamical fields of the

parametrized theory are thus provided by φ and η. As discussed in [36, 37], the Euler-Lagrange

equations for the fields φ remains unchanged while those for the covariance fields η give the con-

servation of the stress-energy-momentum tensor. These fields do not modify then the physical

content of the original theory and provide an efficient way of parametrizing it. The construc-

tion outlined above therefore provides us with a diffeomorphism-covariant reformulation of field

theories where all fields are treated as variational entities, thus satisfying all the requirements

of general covariance6 [54].

2.3 Covariant Momentum Map

Along the same steps discussed in Sec. 2.1, we can now develop a covariant Hamiltonian formal-

ism for (first order) parametrized field theories by considering the covariant or parametrized

multiphase space Z̃ ∼= J1(Ỹ)∗ equipped with a canonical Poincaré-Cartan (n+ 1)-form

Θ̃ = p̃ dn+1x+ pµAdyA ∧ dnxµ + %µadua ∧ dnxµ , (2.18)

where, taking into account that both φ and η are dynamical variables for the extended the-

ory, the covariant Hamiltonian p̃ and the multimomenta pµA, %
µ
a (respectively conjugate to the

6This has to be contrasted with considering the metric g directly as a genuine field on X which will then make

the Lagrangian Diff(X )-equivariant but g itself cannot be considered variational unless one adds a source term

(e.g., the Einstein-Hilbert Lagrangian) to the Lagrangian density.
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multivelocities vAµ and uaµ) are defined w.r.t. the Lagrangian (2.11), i.e.

p̃ = L̃− ∂L̃

∂vAµ
vAµ −

∂L̃

∂uaµ
uaµ, pµA =

∂L̃

∂vAµ
=

∂L

∂vAµ
, %µa =

∂L̃

∂uaµ
= T µνubνgab , (2.19)

with T µν = 2 ∂L
∂Gµν

the so-called Piola-Kirchhoff stress-energy-momentum tensor density [36].

The multisymplectic (n+ 2)-form Ω̃ = −dΘ̃ on Z̃ then reads

Ω̃ = dyA ∧ dpµA ∧ dnxµ + dua ∧ d%µa ∧ dnxµ − dp̃ ∧ dn+1x . (2.20)

Let now G be a Lie group (perhaps infinite-dimensional) realizing the gauge group of the

theory and denote by g its Lie algebra. In the case of generally covariant field theories, G is

a subgroup of Aut(Ỹ) covering diffeomorphisms on X . Given an element ξ ∈ g, we denote by

ξX , ξY , ξỸ , and ξZ̃ the infinitesimal generators of the corresponding transformations on X ,Y, Ỹ,

and Z̃, i.e., the infinitesimal generators on X ,Y, Ỹ, and Z̃ of the one-parameter group generated

by ξ. The group G is said to act on Z̃ by covariant canonical transformation if the G-action

corresponds to an infinitesimal multi-symplectomorphism, i.e.

LξZ̃ Ω̃ = 0 , (2.21)

where LξZ̃ denotes the Lie derivative along ξZ̃ , while it is said to act by special covariant

canonical transformations if Θ̃ is G-invariant, that is

LξZ̃ Θ̃ = 0 . (2.22)

This is the Hamiltonian counterpart of the G-equivariance property (2.17) of the Lagrangian

which in turn amounts to G-invariance of the Lagrangian form ΘL̃ on J1(Ỹ) defined as the

pull-back of Θ̃ along the covariant Legendre transform.

In analogy to the definition of momentum maps in symplectic geometry [47, 48, 55], a

covariant momentum map (or a multimomentum map) associated to the action of G on

Z̃ by covariant canonical transformations is a map

J̃ : Z̃ −→ g∗ ⊗ Λn(Z̃) , (2.23)

given by

dJ̃ (ξ) = iξZ̃ Ω̃, (2.24)

where J̃ (ξ) is the n-form on Z̃ whose value at z̃ ∈ Z̃ is 〈J̃ (z̃), ξ〉 with 〈·, ·〉 being the pairing

between the Lie algebra g and its dual g∗.
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Let then α ∈ G be the transformation associated to ξ ∈ g, the covariant momentum map J̃
is said to be Ad∗-equivariant if

J̃ (Ad−1
α ξ) = α∗Z̃ [J̃ (ξ)] . (2.25)

When G acts by special covariant canonical transformations, the (special) covariant momentum

map admits an explicit expression given by

J̃ (ξ) = iξZ̃ Θ̃ , (2.26)

so that dJ̃ (ξ) = diξZ̃ Θ̃ = (LξZ̃ − iξZ̃d)Θ̃ = iξZ̃ Ω̃. In particular – and this is the case of interest

for parametrized field theories – if the G-action on Z̃ is the lift of an action of G on Ỹ, then for

any ξ ∈ g realized as a (complete) vector field ξX = ξµ(x) ∂
∂xµ on X , we have

ξỸ = ξµ(x)
∂

∂xµ
+ ξA(x, y, u, [ξ])

∂

∂yA
, (2.27)

where in general ξA(x, y, u, [ξ]) is a smooth functional of ξν which for tensor field theories reads

ξA(x, y, u, [ξ]) = CAρν (x, y, u)ξν,ρ(x) + CAν (x, y, u)ξν(x) , (2.28)

with coefficients C depending on xµ, yB and ub, and reduces to ξA(x, y, u, [ξ]) = CAν (x, y, u)ξν(x)

in the case of a scalar field. Note that in Eq. (2.27) there are no components in the “u-directions”

since, as discussed in the previous section (cfr. Eq. (2.13)), for any αX ∈ Diff(X ), there is a

lift αY ∈ Aut(Y) which is trivially extended to Ỹ by αỸ : (y, u, x) 7→ (αY(y), u, αX (x)). In

coordinates, Eq. (2.26) then reads

〈J̃ (z̃), ξ〉 =
(
p̃ ξµ + pµAξ

A
)

dnxµ − pµAξνdyA ∧ dn−1xµν − %µaξνdua ∧ dn−1xµν , (2.29)

where dn−1xµν = i∂ν i∂µdn+1x.

2.4 Canonical Phase Space and Energy-Momentum Map

In the covariant formulation fields are defined as sections of bundles over spacetime. The canon-

ical formalism instead relies on fields defined as “time-evolving” cross sections of bundles over

a Cauchy surface. Therefore, in order to construct the canonical formulation of a field theory

we need to introduce a foliation of spacetime and consequently of the bundles over it. The base

manifold X can be thus decomposed into a smooth disjoint union of space-like hypersurfaces7.

7In what follows, we assume the spacetime manifold to be globally hyperbolic, i.e., X ∼= Σ × R, so that the

foliation introduced to construct the canonical formalism covers the whole manifold thus avoiding technicalities

concerning the possibility of defining the canonical formalism only locally.
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Let then Σ be a compact, oriented, connected, boundaryless 3-manifold and let EmbG(Σ,X )

be the set of all space-like embeddings of Σ in X . A foliation sX of X then corresponds to a

1-parameter family λ 7→ τλ of space-like embeddings τλ ∈ EmbG(Σ,X ) of Σ in X , i.e.

sX : Σ× R→ X by (~x, λ) 7→ sX (~x, λ) , (2.30)

such that

τ ≡ τλ : Σ→ X by τ(~x) ≡ τλ(~x) := sX (~x, λ) , (2.31)

where ~x is a shorthand notation for the spatial coordinates xi, i = 1, . . . , n, on the space-like

hypersurface Στ = τ(Σ). The generator of sX is a complete vector field ζX on X everywhere

transverse to the slices defined by

τ̇(~x) =
∂

∂λ
sX (~x, λ) = ζX (sX (~x, λ)) . (2.32)

A foliation of X induces a compatible slicing of bundles over it whose generating vector fields

project to ζX . The flow of such a generating vector field defines a one-parameter group of

bundle automorphisms. For parametrized field theories we are interested in a so-called G-

slicing in which case the one-parameter group of automorphisms of the extended configuration

bundle is induced by a one-parameter subgroup of the gauge group G, i.e., ζỸ = ξỸ for some

ξ ∈ g. The corresponding slicing sZ̃ of Z̃ is then generated by the canonical lift ζZ̃ = ξZ̃ of ξỸ

to Z̃ whose flow defines a one-parameter group of bundle automorphisms by special canonical

transformations on Z̃ (i.e., LξZ̃ Θ̃ = 0)8.

Spatial fields will then be identified with smooth sections of the pull-back bundle Yτ → Στ

over a Cauchy surface given by ϕ := φτ = τ∗φ. Note that, as the subscript τ is meant to

recall, the spatial fields ϕ(~x) = φτ (~x) are functionals of the embedding τ and at the same

time functions of the point ~x on the spatial slice. Moreover, according to the parametrization

procedure discussed in Sec. 2.2, the space-like embedding τ ∈ EmbG(Σ,X ) acquires a dynamical

character through the covariance fields η. Indeed, we have τ = η−1 ◦ τ̃ for a given space-like

embedding τ̃ ∈ Embg(Σ, X̃ ) of Σ into X̃ associated to the slicing of X̃ w.r.t. the fixed metric g.

The canonical parametrized configuration space then consists of the pairs (ϕ, τ) of spatial fields

defined over a Cauchy slice and the space-like embeddings identifying a G-slicing of spacetime

w.r.t. one-parameter subgroups of diffeomorphisms. Let then (x0, x1, . . . , xn) be a chart on X
adapted to τ , i.e. such that Στ is locally a level set of x0. Denoting by (ϕ,Π, τ, P ) a point in the

canonical parametrized phase space T ∗Ỹτ = T ∗Yτ × T ∗EmbG(Σ,X ), the canonical symplectic

8As already stressed before, this essentially reflects the equivariance property of the Lagrangian density w.r.t.

to the one-parameter groups of automorphisms associated to the induced slicings of J1(Ỹ) and Λn+1(X ).
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structure ω̃τ on T ∗Ỹτ reads as [56]

ω̃τ (ϕ,Π, τ, P ) =

∫

Στ

(
dϕA ∧ dΠA + dτµ ∧ dPµ

)
⊗ dnx0 . (2.33)

Following the construction of [22] (cfr. Ch. 5), the multisymplectic structure on Z̃ induces

a presymplectic structure on the space Z̃τ of sections of the bundle Z̃τ → Στ given by

Ω̃τ (σ)(V,W ) =

∫

Στ

σ∗(iW iV Ω̃) , σ ∈ Z̃τ , V,W ∈ TσZ̃τ (2.34)

which in turn is related to ω̃τ via Ω̃τ = R∗τ ω̃τ , where Rτ is the bundle map Rτ : Z̃τ → T ∗Ỹτ

relating in adopted coordinates the momenta ΠA and Pa respectively to the temporal components

of the multimomenta pµA and %µa as

ΠA = p0
A ◦ σ , Pa = %0

a ◦ σ . (2.35)

In particular [22], kerTσRτ = ker Ω̃τ (σ) and the canonical parametrized phase space T ∗Ỹτ is

thus isomorphic to the quotient Z̃τ/ ker Ω̃τ .

Let now σ ∈ Z̃ ≡ Γ(X , Z̃) be a section of the bundle Z̃ over X , and let αZ̃ : Z̃ → Z̃ be

a covariant canonical transformation covering a diffeomorphism αX : X → X whose induced

action on sections is given by αZ̃ (σ) = αZ̃ ◦ σ ◦ α
−1
X (cfr. Eq. (2.15)). The corresponding

transformation on Z̃τ ≡ Γ(Στ , Z̃ ) given by

αZ̃τ
: Z̃η−1◦τ̃ −→ Z̃αX̃ (η)−1◦τ̃

σ 7−→ αZ̃τ
(σ) = αZ̃ ◦ σ ◦ α

−1
τ , (2.36)

with αX̃ (η) defined in (2.16) and ατ := αX |Στ is a (special) covariant canonical transformation

relative to the presymplectic 2-form (2.34) if αZ̃ is a (special) covariant canonical transformation

[22].

The covariant multimomentum map (2.24) associated to the G-action on Z̃ will then induce

a so-called (parametrized) energy-momentum map on Z̃τ defined by

Ẽτ : Z̃τ −→ g∗ , Ẽτ (σ, η) = Ẽη−1◦τ̃ (σ) :=

∫

Στ

σ∗ 〈J̃ , ξ〉 , (2.37)

which is Ad∗-equivariant w.r.t. the action (2.36), namely

〈Ẽτ (σ, η),Ad−1
α ξ〉 = 〈α∗

Z̃τ

[
Ẽτ (σ, η)

]
, ξ〉 . (2.38)

15



Indeed

〈α∗
Z̃τ

[
Ẽτ (σ, η)

]
, ξ〉 = 〈ẼαX̃ (η)−1◦τ̃ (αZ̃τ

(σ))〉

=

∫

(η◦α−1
X )−1◦τ̃(Σ)

(αZ̃ ◦ σ ◦ α
−1
τ )∗ 〈J̃ , ξ〉

=

∫

αX ◦(η−1◦τ̃)(Σ)
(α−1

τ )∗ σ∗ α∗Z̃ 〈J̃ , ξ〉

=

∫

η−1◦τ̃(Σ)
σ∗ α∗Z̃ 〈J̃ , ξ〉 (change of variables)

=

∫

η−1◦τ̃(Σ)
σ∗ 〈J̃ ,Ad−1

α ξ〉 (Ad∗-equivariance of J̃ )

= 〈Ẽη−1◦τ̃ (σ),Ad−1
α ξ〉

= 〈Ẽτ (σ, η),Ad−1
α ξ〉 . (2.39)

The energy-momentum map is intimately related to the initial value constraints which gen-

erate the covariant gauge freedom thus providing on the one hand a fundamental link between

dynamics and the gauge group, and on the other hand encoding in a single geometrical object

all the physically relevant information about a given classical field theory [22].

To see this, let us denote by P̃τ the primary constraint submanifold in T ∗Ỹτ defined as

P̃τ = Rτ (Ñτ ) ⊂ T ∗Ỹτ with Ñτ = FL((j1Ỹ )τ ) ⊂ Z̃τ , FL being the Legendre transform.

For lifted actions – and this is the case for a G-slicing discussed before – the projection J̃H :

P̃τ → g∗ on P̃τ of the parametrized energy-momentum map (2.37) encodes the first class

secondary constraints respectively as its components in the transversal and tangential directions

to the spatial slice. Indeed at the level of densities, using adapted coordinates and recalling the

expressions (2.26), (2.29), we have

σ∗(iζZ̃ Θ̃) =
[
(p0
A ◦ σ)(ζA ◦ σ − ζµσA,µ)− (%0

a ◦ σ)ζµσa,µ (2.40)

+
(
p̃ ◦ σ + (pµA ◦ σ)σA,µ + (%µa ◦ σ)σa,µ

)
ζ0
]
dnx0

for any σ ∈ Z̃τ and ζZ̃ the canonical lift of the generator of the G-slicing ζX = ξX to Z̃. Now,

for any σ holonomic lift of (ϕ,Π, τ, P ) to Ñτ , that is σ ∈ R−1
τ {(φ,Π, τ, P )} ∩ Ñτ , we have

σA = φA
∣∣
Στ

= ϕA and σa = ηa
∣∣
Στ

so that

ζA ◦ σ − ζµσA,µ = (ζA ◦ φ− ζµφA,µ)
∣∣
Στ

= − (Lζφ)A
∣∣
Στ

=: −ϕ̇A , (2.41)

and

p̃ ◦ σ + (pµA ◦ σ)σA,µ + (%µa ◦ σ)σa,µ = L̃(σ) , (2.42)
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where we used the expressions for the covariant Hamiltonian and the multimomenta (Eqs. (2.19))

and for the canonical momenta (Eq. (2.35)). Hence, Eq. (2.40) yields

σ∗(iζZ̃ Θ̃) = −
(

ΠAϕ̇
A + Paζ

µηa,µ − L̃(σ)ζ0
)

dnx0 , (2.43)

from which, by using the fact that

L̃(σ)ζ0dnx0 = τ∗iζX L̃ (j1φ, j1η) = iζX L̃ (j1ϕ, ϕ̇, j1ητ , η̇τ ),

it follows that the parametrized energy-momentum map (2.37) induces a functional on P̃τ

J̃H : P̃τ 7−→ g∗ , (2.44)

given by

〈J̃H(ϕ,Π, τ, P ), ζ〉 = −
∫

Στ

dnx0(ζµH(ϕ)
µ + ζµPµ) (2.45)

= −
(
H(ϕ)(ζ)(ϕ,Π, τ) + P (ζ)(τ, P )

)
,

where Pµ = ηa,µPa is the pull-back of Pa to Σ along η. The functional (2.45) on P̃τ is nothing

but the total Hamiltonian whose components in the tangential and transversal direction to the

spatial slice yields the super-momenta and Hamiltonian constraints.

As it will be discussed in the next subsection, this functional is a equivariant moment map

w.r.t. the G-action on the canonical parametrized phase space and it provides us with a repre-

sentation of the Lie algebra of Diff(X ) on the parametrized phase space. Differently from the

standard case of instantaneous canonical formalism where the equivariance of the corresponding

functional is spoiled by the algebra of constraints, the key ingredient which give rise to a Lie

algebra (anti)homomorphism between the algebra diff(X ) and the Poisson bracket algebra of ob-

servable functionals on the parametrized phase space relies on the introduction of the covariance

fields which in turn allows to induce a corresponding G-action on the space of embeddings of Σ

into X . The action of the diffeomorphism group on the embeddings τ induced via the action on

η was actually what ensured the equivariance of the parametrized energy-momentum map (cfr.

Eq. (2.39)).
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2.5 Representation of Spacetime Diffeomorphisms: Diff(X )-equivariant Mo-

mentum Map

Let G = Diff(X ) be the group of diffeomorphisms (i.e., smooth and inventible active point

transformations9) of the spacetime manifold X . The Lie algebra g = diff(X ) can be realized

as the set of all (complete) vector fields on X . Indeed, for any element ξ ∈ diff(X ), we can

associate to it a vector field ξX ∈ X(X ) generating a one-parameter group αξλ of spacetime

diffeomorphisms by
d

dλ
αξλ(x) = ξX (αξλ(x)) ∀x ∈ X . (2.46)

In the standard setting of instantaneous canonical formalism, the generating vector field is

decomposed into its “lapse” and “shift” components. i.e. it can be written as the sum of two

vectors which are respectively normal and tangent vectors to the space-like hypersurface, say

ξµX (~x) = N(~x)nµ(τ(~x)) +Nk(~x)τµ,k(~x) (2.47)

where nµ = Gµνnν is the future-pointing normal such that τ∗n = 0 for any ~x ∈ Στ and

Gµνnνnν = −1, and N ∈ C∞(Σ,X ), ~N ∈ TΣ are respectively called the lapse function (N)

and the shift vector ( ~N) of the foliation [26, 31]. They respectively specify the magnitude of

the normal and tangential deformation at every point on a spatial hypersurface. The location

of a neighbouring slice (i.e. how the slices are embedded in a given spacetime) is determined

by specifying lapse and shift which play the role of arbitrary Lagrange multipliers in the action

implementing the first-class constraints of the theory.

The algebra diff(X ) of the spacetime diffeomorphism group is however “deformed” by the

decomposition into perpendicular and tangential directions to the spatial hypersurfaces. Indeed,

the projected constraint functions do not form a genuine Lie algebra but rather a Lie algebroid

structure known as the Dirac hypersurface-deformation algebra [51, 58, 59] which, after smearing

with lapse and shift, reads10

{H[ ~N ], H[ ~M ]} = H[L ~N ~M ] ,

{H[ ~N ], H[M ]} = H[L ~NM ] ,

{H[N ], H[M ]} = H[ ~K] ,

(2.48)

where L ~N is the Lie derivative along the vector field ~N (i.e., L ~N ~M = [ ~N, ~M ] and L ~NM =

9This should not be confused with the pseudo-group of passive transformations which describes the relations

between overlapping pairs of coordinate charts. For details on the notion of passive and active diffeomorphisms

and their connection we refer to [57] and references therein.
10We refer to [38] Sec. 3.3 for the detailed calculation of the constraint algebra for the case of a canonical

parametrized scalar field theory.
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NkM,k), and ~K is such that

Kj = Qjk (NM,k −MN,k) . (2.49)

Therefore, the Poisson brackets between two super-Hamiltonians H[N ], H[M ] depend not only

on the pair of shift functions N and M but also explicitly on the canonical embedding variable

through the induced (inverse) 3-metric Qab. This implies that the full algebra of spacetime

diffeomorphisms cannot be represented on the canonical parametrized phase space as it is not

homomorphically mapped into a Poisson bracket algebra on the parametrized phase space. Only

the subalgebra diff(Σ) of spatial diffeomorphisms can be represented in the canonical formalism,

as the map ~N 7→ H[ ~N ] provides a Lie algebra homomorphism of diff(Σ) into a Poisson bracket

algebra on the phase space of the system according to the first equation in (2.48). This reflects

into the fact that the (instantaneous) energy-momentum map or super-momentum map

Eτ : T ∗EmbG(Σ,X )× T ∗Yτ → Λ0
d × Λ1

d , (2.50)

given by

Eτ [N, ~N ] =

∫

Σ
d3x 〈(N, ~N), Eτ 〉

=

∫

Σ
dnx0

(
NH+NkHk

)
= H[N ] +H[ ~N ]

(2.51)

with Λ0
d × Λ1

d the dual of the space of lapses and shifts, i.e., Λ0
d and Λ1

d respectively denote the

spaces of function densities and 1-form densities on Σ, is not a true momentum map. Indeed,

as can be checked by direct computation, from the Dirac algebra (2.48) it follows that

{Eτ [N, ~N ], Eτ [M, ~M ]} = Eτ [L ~NM − L ~MN,L ~N ~M + ~K] , (2.52)

i.e., Eτ is not (infinitesimally) equivariant. Only if we restrict to the spatial diffeomorphisms,

i.e., the subgroup Gτ = Diff(Στ ) of transformations which stabilize the image of τ , the energy-

momentum map (2.51) induces a momentum map w.r.t. the Gτ -action, say

Jτ := Eτ
∣∣
gτ

: T ∗EmbG(Σ,X )× T ∗Yτ → g∗τ (2.53)

such that

Jτ [ ~N ] =

∫

Σ
dnx0N

kHk = H[ ~N ] , (2.54)

which, as expected from the first of equations (2.48), is equivariant under the Gτ -action, thus

providing a representation of the Lie algebra gτ = diff(Στ ) of spatial diffeomorphisms in terms

of a Poisson bracket algebra of functionals on the extended phase space.

However, the action of the full group of diffeomorphisms on the parametrized phase space of

the theory can be recovered by considering the action of Diff(X ) on the embedding themselves.
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Specifically, the left action of Diff(X ) on X induces a natural left action of Diff(X ) on the space

Emb(Σ,X ) of all embeddings of Σ in X

Ψ : Emb(Σ,X )× Diff(X ) −→ Emb(Σ,X ) by (τ, αX ) 7−→ αX ◦ τ , (2.55)

which carries the points τ(~x, λ) of the hypersurface Στ = τ(Σ) into new spacetime positions

αX (τ(~x, λ)) forming a new hypersurface. Indeed, according to the action (2.16) of the diffeo-

morphism group on η, we have

α · τ = αX̃ (η)−1 ◦ τ̃

=
(
η ◦ α−1

X
)−1

◦ τ̃

= αX ◦ η
−1 ◦ τ̃

= αX ◦ τ . (2.56)

The corresponding generating vector field,

ξτ (~x) = ξX (τ(~x)) = ξµX (τ(~x))
∂

∂xµ

∣∣∣∣
τ(~x,λ)

, (2.57)

yields a representation of the algebra diff(X ) by vector fields on EmbG(Σ,X )11. Indeed, although

a generic diffeomorphism α ∈ Diff(X ) in general would not preserve the space-like nature of

the embeddings, for any τ ∈ EmbG(Σ,X ) there exists a open neighborhood of the identity in

Diff(X ) such that the transformed embedding α ◦ τ is still space-like. An element ξ ∈ diff(X ),

realized as a complete vector field ξX on X , thus yields a vector field on EmbG(Σ,X ) by the

prescription (2.57). Such a vector field restricted to the embeddings can be then decomposed

into the corresponding lapse and shift components which now are not freely specifiable but are

some definite functionals of τ . Taking this dependence into account, for any ξ ∈ diff(X ) it is

11Following [38] and references therein, the set EmbG(Σ,X ) of space-like embeddings of Σ into X is thought of

as an infinite-dimensional manifold. Indeed, EmbG(Σ,X ) is a open subset of the set Emb(Σ,X ) of all embeddings

(not necessarily space-like) of Σ into X which in turn is an open subset of the infinite-dimensional manifold

C∞(Σ,X ) of smooth functions from Σ into X equipped with the compact-open topology, thus inheriting its

differential structure. The tangent space TτEmbG(Σ,X ) at τ ∈ EmbG(Σ,X ) is then defined as

TτEmbG(Σ,X ) := {ξτ : Σ→ TX | ξτ (~x) ∈ Tτ(~x)X , ∀ ~x ∈ Σ},

and similarly

T ∗τ EmbG(Σ,X ) := {γτ : Σ→ T ∗X | γτ (~x) ∈ T ∗τ(~x)X , ∀ ~x ∈ Σ},

with L2-dual pairing given by

〈γτ , ξτ 〉 :=

∫
Σ

dnx0

√
detQ(~x) γµ(τ(~x))ξµ(τ(~x)) ,

where Q = τ∗G is the induced metric on Σ.
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possible to define a new Hamiltonian functional on the parametrized phase space related to the

equivariant momentum map (2.45) via

H(ξ)(ϕ,Π, τ, P ) : = −〈ξ, J̃H(ϕ,Π, τ, P )〉

=

∫

Σ
dnx0 ξ

µ
X (τ(~x))Hµ(ϕ,Π, τ, P )

=

∫

Σ
dnx0 ξ

µ
X (τ(~x))

(
H(ϕ)
µ + Pµ

)
. (2.58)

This result is compatible with the procedure introduced by Isham and Kuchař in [38] for the case

of a parametrized scalar field theory where the key step in representing spacetime diffeomor-

phisms was the observation that the embedding variables (which tells us how the model Cauchy

surface Σ lies in the spacetime manifold) provide a link between the spatial and spatiotemporal

pictures.

At the infinitesimal level, the equivariance property of the Hamiltonian (2.58) can be seen as

follows. Using the fact that the Poisson bracket between the unprojected constraint functions

vanishes strongly and the canonical Poisson brackets {τµ(~x), Pν(~x ′)} = δµν δ(~x, ~x ′) between the

embeddings and their conjugate momenta as well as that the embedding commutes withH(ϕ), for

any two Lie algebra elements ξ, ζ ∈ diff(X ) whose corresponding vector fields ξX (τ(~x)), ζX (τ(~x))

generate one-parameter groups of spacetime diffeomorphisms, we have

{H(ξ), H(ζ)} = −
∫

Σ
dnx0 [ξX , ζX ]µ

∣∣
τ(~x)
Hµ(~x)

= −H([ξX , ζX ])

= H([ξ, ζ]) , (2.59)

where the Lie bracket [ξ, ζ] is defined as the opposite of the commutator between the corre-

sponding vector fields, say

[ξ, ζ] = −[ξX , ζX ] = −
(
ξνX ζ

µ
X ,ν − ζνX ξ

µ
X ,ν

) ∂

∂xµ
. (2.60)

Thus, the mapping ξ 7→ H(ξ) is a (anti)homomorphism between the Lie algebra diff(X ) and the

Poisson bracket algebra of observable functionals on the parametrized phase space. This shows

that for any ξ ∈ diff(X ) the functional H(ξ) (resp. J̃H(ξ)) defines a equivariant momentum map

w.r.t. the action of the spacetime diffeomorphism group on the parametrized phase space. Such

property reflects the equivariance of the parametrized energy-momentum map (2.37), which

in turn was provided by considering the action (2.55) of diffeomorphisms on the embeddings

induced via the covariance fields.
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Finally, the total Hamiltonian (2.58) is constructed in such a way that the constraints are

preserved along the flow generated by H(ξ), that is

Ḣα(~x) =

∫

Σ
dnx′0{Hµ(~x), ξνX (τ(~x ′))}Hν(~x ′) (2.61)

vanishes on the constraint surface. Moreover, as any functional of the embedding commutes

with H(ϕ), we have

τ̇µ(~x) =

∫

Σ
dnx′0 ξ

ν
X (τ(~x ′)){τµ(~x), Pν(~x ′)} = ξµX (τ(~x)) , (2.62)

i.e., ξX (τ(~x)) is the deformation vector of the foliation which can be decomposed into its transver-

sal ~ξ‖(τ(~x)) and normal ξ⊥(τ(~x)) components which, unlike the Lagrange multipliers N and ~N

entering the parametrized action, are now specific functionals of the embedding. On the other

hand, since P (ξ) commutes with the field variables, the rates of change of the field ϕ and its

conjugate momentum Π yield the Hamiltonian field equations with deformation vector ξX (τ(~x)).

Therefore, the co-momentum map H(ξ) defined in Eq. (2.58) generates the deformation of

the embedding induced by the vector field ξX on X together with the dynamical evolution of the

field variables and, since the constraints are preserved along this flow, on-shell field configurations

are compatibly evolved along the constraint surface. In other words, the canonical action of

Diff(X ) represented by H(ξ) generates a displacement of the spatial hypersurface embedded in

spacetime and also set the correctly evolved Cauchy data for fields on the deformed hypersurface.

Note that the explicit embedding-dependence of the induced vector field ξX on X entering (2.58)

implies that H(ξ) comes to be the Hamiltonian function along the flow lines generated by ξX

which correspond to a one-parameter family of emebeddings which in turn identifies a foliation

with deformation vector ξX (τ(~x)). Thus, for any ξ ∈ diff(X ), realized as a complete vector field

on X , the induced vector field on EmbG(Σ,X ) is the tangent vector field to a curve of embeddings

which identifies a foliation of spacetime. Different Lie algebra elements would identify different

foliations whose corresponding deformation vectors are given by the induced vector fields on X
restricted to the embedding. In this sense the momentum map H(ξ) (resp. J̃H(ξ)) provides a

faithful representation of the Lie algebra of Diff(X ) on the parametrized phase space.

3 Covariant Gauge Group Thermodynamics

We can finally proceed to extend the generalized notion of thermodynamic equilibrium states á

la Souriau to parametrized field theories in which the Hamiltonian action we are interested in is

that of the spacetime diffeomorphism group Diff(X ) or, more precisely, the lifted action to the
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parametrized phase space of the automorphisms of the extended configuration bundle covering

diffeomorphisms on the base manifold X .

3.1 Generally Covariant Gibbs State

To avoid weighing the notation down, in what follows we generically denote the canonical

parametrized phase space of the theory by Υ, i.e., Υ ≡ T ∗Yτ × T ∗EmbG(Σ,X ).

A statistical state ρ : Υ → R([0,+∞[) on the parametrized phase space is a smooth proba-

bility density on Υ such that, for any Borel subset A of Υ, the integral

µ(A ) =

∫

A
D[ϕ,Π, τ, P ] ρ(ϕ,Π, τ, P ) (3.1)

defines a probability measure on Υ with the normalization condition

Z(ρ) =

∫

Υ
D[ϕ,Π, τ, P ] ρ(ϕ,Π, τ, P ) = 1 , (3.2)

where D[ϕ,Π, τ, P ] formally denotes the integration measure on Υ. To such a statistical state,

we can associate a entropy functional

S(ρ) = −
∫

Υ
D[ϕ,Π, τ, P ] ρ(ϕ,Π, τ, P ) log ρ(ϕ,Π, τ, P ) , (3.3)

with the convention that ρ log ρ = 0 for ρ = 0. Given a functional on Υ, say f ∈ F(Υ), the

mean value of f w.r.t. ρ is then defined as

Eρ(f) =

∫

Υ
D[ϕ,Π, τ, P ]ρ(ϕ,Π, τ, P )f(ϕ,Π, τ, P ). (3.4)

In particular, for deriving our Gibbs state, we shall consider the mean value Eρ(J̃H) of the

momentum map (2.45)

Eρ(J̃H) : F(Υ) −→ g∗ , Eρ(J̃H) =

∫

Υ
D[ϕ,Π, τ, P ]ρ(ϕ,Π, τ, P )J̃H(ϕ,Π, τ, P ) (3.5)

such that, for ξ ∈ g = diff(X ), it yields

〈ξ,Eρ(J̃H)〉 : F(Υ) −→ R (3.6)

by

〈ξ,Eρ(J̃H)〉 =

∫

Υ
D[ϕ,Π, τ, P ]ρ(ϕ,Π, τ, P ) 〈ξ, J̃H(ϕ,Π, τ, P )〉 = Eρ(J̃H(ξ)) . (3.7)

Stationarity of the entropy functional (3.3) under an infinitesimal smooth variation ρs(ϕ,Π, τ, P )

with s ∈] − ε, ε[, ε > 0 of the statistical state ρ with fixed mean value of J̃H can be therefore
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implemented by introducing two Lagrange multipliers b ∈ g = diff(X ), a ∈ R respectively asso-

ciated to the constraint Eρ(J̃H) = const. and the normalization condition (3.2) via

S(ρs) = S(ρs)− 〈b,Eρs(J̃H)〉 − aZ(ρs) , (3.8)

such that
δS(ρs)

δs

∣∣∣∣
s=0

= 0 ∀ ρs . (3.9)

Hence, we get

0 =
δS(ρs)

δs

∣∣∣∣
s=0

= −
∫

Υ
D[ϕ,Π, τ, P ]

(
1 + log (ρ(ϕ,Π, τ, P )) + 〈b, J̃H(ϕ,Π, τ, P )〉+ a

)δρs
δs

∣∣∣∣
s=0

, (3.10)

for any ρs, from which it follows that

ρa,b(ϕ,Π, τ, P ) = exp
(
−1− a− 〈b, J̃H(ϕ,Π, τ, P )〉

)
. (3.11)

The normalization condition (3.2) then implies

Z(b) = exp (1 + a) =

∫

Υ
D[ϕ,Π, τ, P ] exp

(
−〈b, J̃H(ϕ,Π, τ, P )〉

)
, (3.12)

where we limit b to the subset Ω ⊂ g such that the above integral converge. The generally

covariant Gibbs statistical state is given by

ρ
(eq)
b (ϕ,Π, τ, P ) =

1

Z(b)
exp

(
−〈b, J̃H(ϕ,Π, τ, P )〉

)

=
1

Z(b)
exp

(∫

Σ
dnx0 ξ

µ
(b)(τ(~x))

(
H(ϕ)
µ (~x) + Pµ(~x)

))
(3.13)

where ξ(b) denotes the vector field on X associated to b ∈ diff(X ) generating a one-parameter

family of spacetime diffeomorphisms. Note that the statistical state (3.13) is now a functional

of the fields (ϕ,Π, τ, P ) through the comomentum map functional 〈b, J̃H〉. In particular, being

a functional on the parametrized phase space, the dependence from the spacetime coordinates

occurs only through the dynamical variables thus respecting the coordinate-independence of

relativistic theories. Moreover, as a functional of the embeddings, the statistical state (3.13)

is covariant in the sense that the momentum map is evaluated on any space-like hyper-surface

without fixing the slicing a priori. The one-parameter group of automorphisms of the extended

configuration space generated by b ∈ diff(X ) identifies a generalized concept of “time evolution”

w.r.t. which the Gibbs state is of equilibrium.
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3.2 Generalized Thermodynamic Potentials

Let us assume that the Hamiltonian action of the – G-slicing preserving – one-parameter sub-

group of the diffeomorphisms, and its covariant moment map J̃H : P̃τ 7−→ g∗ are such that the

ensemble of generalised (inverse) temperatures Ω ⊂ g is non-empty.

Whenever the generalized Gibbs states (3.13) can be defined, the infinite differentiability of

the associated partition function Z : Ω→ R in (3.12) allows us to define generalized macroscopic

functions over Ω, in terms of differentials of Z(b) [32].

The thermodynamic free energy potential, F (b) ≡ − logZ(b), encodes complete thermody-

namic information about the system. The equilibrium internal energy Q : Ω → g∗ is given by

the first differential of F (b), taken as a smooth map from g in R,

Q(b) ≡ DF (b) = −D(logZ(b)), (3.14)

corresponding to the average momentum map in the generalised Gibbs ensemble. Exactly as for

standard equilibrium thermodynamics, to a given Q corresponds at most one value of b, so that

F (b) and the equilibrium probability density ρb are uniquely determined.

The entropy function S : Ω→ R, as defined in (3.3), has a strict maximum S(b) at equilib-

rium, given by

S(b) = logZ(b)− 〈D(logZ(b)), b〉 (3.15)

= −F (b) + 〈Q(b), b〉 .

From the second differential of F (b), for Y,Z ∈ g, b ∈ Ω, one gets a generalised geometric

expression for the covariance matrix,

〈DQ(b)(Y ), Z〉 = 〈Q(b), Y 〉 〈Q(b), Z〉 − Eρb
[
〈J̃H , Y 〉〈J̃H , Z〉

]
. (3.16)

In particular, ∀b ∈ Ω, ∀Y ∈ g, the contracted differential

〈DQ(b)(Y ), Y 〉 = −Eρb
[(
〈J̃H −Q(b), Y 〉

)2
]
≤ 0 (3.17)

defines the concavity of the free energy. On the diagonal, ∀Y ∈ g, Y 6= 0, such that 〈J̃H , Y 〉 6=
const on P̃τ , the above formula defines a positive definite bilinear symmetric form,

D(D(logZ(b)))(Y, Y ) = −〈DQ(b)(Y ), Y 〉 > 0 , (3.18)

which corresponds, in thermodynamic terms [34], to a geometric notion of heat capacity. 12

12In information geometry [60, 61], the negative of the second derivative (Hessian) of the free energy in (3.17)
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3.3 Canonical vs Microcanonical Imposition of the Constraints

The state (3.13), together with the associated thermodynamic potentials define an equilibrium

thermodynamic (or thermostatic) characterisation for the system of fields on P̃τ . At any fixed

temperature, the system is governed by the principle of minimum free energy. Instead of occu-

pying a single definite state, given by the Dirac measure δ(J̃H(ϕ,Π, τ, P )) which imposes the

diffeomorphisms symmetry constraint on Υ, the system of fields is allowed to have different

probabilities of occupying different states, and these probabilities will be chosen to minimize the

generalized free energy

F (b) = 〈Q(b), b〉 − S(b) . (3.19)

In standard thermodynamics, the principle of minimum free energy reduces to the principle

of minimum energy when b → ∞. In our generalised statistical framework, despite J̃H being

not necessarily bounded below and the measure D not being finite, the free energy function

F (b) is strictly concave and analytic on the open interval Ω ⊂ g. As b → 0, ρ
(eq)
b tends to the

uniform distribution over Υ, for limb→0 e
−〈b,J̃H(ϕ,Π,τ,P )〉 = 1. On the other hand, as b → ±∞

we have that limb→∞ e−〈b,J̃H(ϕ,Π,τ,P )〉 = 1 if J̃H(ϕ,Π, τ, P ) = 0, and 0 otherwise. Therefore, the

Gibbs distribution converges to the uniform distribution defined over the reduced support with

vanishing (though not necessarily minimal) momentum map,13 namely

ρ
(eq)
b → δ(σ̄) (3.20)

with σ̄ ∈ J̃ −1
H (0) ⊂ P̃τ , corresponding to field configurations satisfying both primary and

secondary first class constraints. From the second Noether theorem, we know that field configu-

rations σ̄ such that J̃H(σ) = 0, represent solutions to the Euler-Lagrange equations [21]. In this

sense, we can reformulate symplectic reduction problem for our first order parametrized field

theory in thermodynamic terms, as a limiting case of a general principle of maximum entropy14

[20], and in accordance with the geometrodynamics regained program of Kuchař [63]. To the idea

that the geometry and symmetry together determine the field theory, here we add a further sta-

tistical characterisation, showing that from symmetry assumptions and the energy-momentum

defines the Fisher information matrix, measuring the variance of the equilibrium distribution with respect to the

given b. The positive definite form in (3.18) defines a pairing on g. In finite dimensions, for e.g. g ' RN , this

gives a Riemannian metric on the N -dimensional parameter space, the Fisher metric of Information Geometry

[60]. This defines an interesting connection between Lie group thermodynamics and Information Geometry first

remarked in [62].
13Indeed, for (3.17), the derivative of the expected value of the momentum map with respect to the b parameter

is always negative, so that the expected value decreases monotonically to zero as b→ ±∞.
14For b such that 〈Q(b), b〉 > 0, minimizing the free energy is the same as maximizing S.
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map it is possible to recover the information on the solutions of the Euler-Lagrange equations

in some thermodynamic limit, corresponding to the passage from a canonical description to a

microcanonical description of the constrained theory space.

In a sense, it is natural to understand the generalized Gibbs state in (3.13) as an off-shell

generalisation corresponding to a canonical statistical distribution in which a non-zero weight is

assigned to configurations which do not solve the constraint equations, while at the same time

weighting more such solutions compared to generic configurations in the thermodynamic limit.

From a statistical viewpoint, the passage from our canonical description to the microcanonical

definition of the constrained theory space requires to coarse-grain the information encoded in

the algebra element b.15

3.4 Generalized Second Law

In the equilibrium, thermostatic setting described above, different b ∈ Ω identifies different

slicings of the base manifold (spacetime), corresponding to different Cauchy problems. Each

b corresponds to a choice of frame, which we can identify with a virtual observer, as well as

a virtual reservoir for the system. This allows to recast relations among different equilibrium

Cauchy slicings in terms of thermodynamic relations.

Transformations among equilibrium states induced by the Hamiltonian action of the group

under concern (e.g. whenever two temperatures are related by the adjoint action of the one-d

subgroup of the diffeomorphisms) are trivial due to the equivariance of the multi-momentum

map.16 Actual thermodynamical relations require infinitesimal departure from equilibrium.

In the following, we shall then consider how the equilibrium thermodynamic potentials vary

due to infinitesimal perturbation our equilibrium state, by introducing an externally controlled

parameter s, as shown in 3.1. We can think of s as a work parameter, as we perform work

on the system by varying it. We can then denote an equilibrium state of the system ρs,b by a

temperature and a work parameter (see e.g. [64]).

Following a standard procedure, let us evolve the system from one equilibrium state to

another, while generally driving it away from equilibrium in the interim. We start with a

system at equilibrium ρi,b, for fixed s = i, and we perturb it by varying the work parameter to

a value s = f , while moving along the one-dimensional diffeos flow parameter. Finally, we allow

15Indeed, we can see the uniform distribution partition function as a weighted superposition of canonical

partition functions over various values of the intensive b parameter.
16See [34] for an explicit derivation of the variations of the thermodynamic potentials under adjoint action of

the group, in the generic case
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the system to somehow re-equilibrate with the equilibrium observer–reservoir and relax to ρf,b.

We can measure the difference between initial and final states due to the work done while

deviating from equilibrium via Kullback-Leibler divergence (KL) [60]

D(ρi,b|ρf,b) =

∫

Υ
D[σ]ρi,b(σ) log

(
e−〈b,J̃Hi 〉/Zi(b)

e
−〈b,J̃Hf 〉/Zf (b)

)
≥ 0 (3.21)

The KL predicts that the external work performed on the system is no less than the free en-

ergy difference between the final state. Using our notation for the generalised thermodynamic

functions, we have

D(ρi,b|ρf,b) = − logZi(b)− 〈Ei,b(J̃Hi), b〉+ logZf (b)− 〈Ei,b(J̃Hf ), b〉 (3.22)

= logZf (b)− logZi(b) + 〈Ei,b(J̃Hf − J̃Hi), b〉 ≥ 0 (3.23)

By interpreting W ≡ J̃Hf − J̃Hi as the work associated to the jump in the energy-momentum

map J̃Hi → J̃Hf , we have

〈Ei,b(W ), b〉 ≥ ∆F ≡ Ff (b)− Fi(b) (3.24)

where Fs(b) is the free energy of the state ρs,b as defined above. This is the Clausius inequal-

ity of classical thermodynamics, which express the essential statement of the second law of

thermodynamics for an isothermal transformation.

When the parameter is varied slowly enough that the system remains in equilibrium along the

flow, then the process is reversible and isothermal, and Ei,b(W ) = ∆F .17 The work performed

during a reversible, isothermal process depends only on the initial and final states and not on

the sequence of equilibrium states that mark the journey from [i, b] to [f, b].18

Via KL divergence, we can describe the second law also for the case of an adiabathic trans-

formation, where we imagine to keep J̃ fixed, while changing the temperature bi → bf . In this

case, starting from the general expression in (3.23), we use the general definition of the entropy,

17The case where the same two states at [i, b] and [f, b] are related via the action of a G-slicing preserving one-d

diffeomorphism subgroup is apparent: moving along an adjoint orbit in g∗, by definition, we have ∆F = 0.
18The nonequilibrium work relation [64] further extends this statement to irreversible processes

log
〈
e−〈W,b〉

〉
= −∆F. (3.25)

The value of the nonlinear average on the left depends only on equilibrium states [i, b] and [f, b], and not on the

intermediate, out-of-equilibrium states visited by the system. This implies that we can determine an equilibrium

free energy difference of the system from its statistical fluctuations, by observing it away from equilibrium,

provided we repeat the process many times.
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S(b) = logZ(b) + 〈Eb(J̃H), b〉 to get

S(bf )− S(bi) ≥ 〈Ebf (J̃H), bf 〉 − 〈Ebi(J̃H), bf 〉 (3.26)

= 〈Ebf (J̃H)− Ebi(J̃H), bf 〉
= 〈∆Q, bf 〉

By changing abruptly the temperature, hence the reference observer–reservoir, the entropy of

the system increase, while the reservoir entropy decrease by an amount 〈∆Q, bf 〉, with an overall

change in entropy

∆S − 〈∆Q, bf 〉 ≥ 0 (3.27)

in accordance with the second law of thermodynamics.

A slow variation of the state realised via a series of equilibrium states defines a reversible

adiabathic transformation, with ∆S = 〈∆Q, bf 〉. Again, this quantity would be zero if measured

along an adjoint orbit in g∗.

Differently form the isothermal process, here we perform a change on the slicing of the

manifold, which results in an increase of the entropy of the state of the fields.

4 Equilibrium and Dynamical Evolution

Once our formalism has been settled down and the relevant thermodynamical quantities have

been generalized to the fully covariant framework of parametrized field theories, it might be

useful to check whether previous standard notions can be recovered out of it. In this section

we then focus on the one hand on the relation between spacetime and spatial diffeomorphisms

and the generalized Gibbs states w.r.t. the corresponding one-parameter subgroups. On the

other hand we analyze the possibility of extracting a equilibrium state w.r.t. dynamical evo-

lution by gauge-fixing the diffeomorphism symmetry to disentangle the dynamics encoded in

the constraints. This not only provides us with a consistency check for our formalism, but also

gives some insight on the physical interpretation of the Lie algebra valued temperature in such a

framework. In particular, we elaborate on its inbuilt observer dependence and its relation with

the thermal time hypothesis.

4.1 Spacetime vs. Spatial Diff-Equilibrium State

As discussed in Sec. 2.5, the action of the diffeomorphism group on the covariance fields induces

a natural action of Diff(X ) on the space of embeddings by left action (2.55). The natural action
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of the group Diff(Σ) of spatial diffeomorphisms on the space of embeddings is instead the right

action, namely:

Emb(Σ,X )× Diff(Σ) −→ Emb(Σ,X ) by (τ, αΣ) 7−→ τ ◦ αΣ . (4.1)

according to which a point ~x ∈ Σ is mapped by αΣ ∈ Diff(Σ) into a new point ~x′ = αΣ(~x) ∈ Σ,

and then this point is mapped by the embedding τ into the spacetime point τ(~x′) ∈ X .

The right action (4.1) of Diff(Σ) induces a left action of Diff(X ) on a given hypersurface τ(Σ)

which preserves the hypersurface fixed, i.e., for a given τ ∈ Emb(Σ,X ), we have

τ ◦ αΣ = ΦαΣ
◦ τ , (4.2)

such that the following diagram

X ΦαΣ // X

Σ

τ

OO

αΣ
//Σ

τ

OO (4.3)

commutes. In particular, considering a one-parameter subgroup of Diff(Σ) which induces a one-

parameter subgroup of hypersurface preserving spacetime diffeomorphisms, the corresponding

generating vector fields ξΣ ∈ X(Σ) and ξX ∈ X(X ) are related by

ξX = τ∗ξΣ i.e. ξµX (τ(~x)) = τµ,k(~x)ξkΣ(~x) . (4.4)

Note that, unlike the fully spacetime covariant case discussed in the previous sections, the

embedding τ is now fixed thus restricting ourselves to a given spatial hypersurface Στ = τ(Σ).

Correspondingly, the restriction of the covariant momentum map J̃H to the subalgebra gτ =

diffΣτ (X ) of spatial diffeomorphisms which preserves the image of τ identifies an equivariant

momentum map w.r.t. the action of the subgroup Gτ = Diff(Στ ). Indeed, using the relation

(4.4), for bτ ∈ gτ = diffΣτ (X ) we have

〈J̃H(ϕ,Π, τ, P ), bτ 〉 = −
∫

Στ

dnx0 ξ
µ
(bτ )(τ(~x))Hµ(~x)

= −
∫

Στ

dnx0 τ
µ
,k(~x)ζk(bτ )(~x)Hµ(~x)

= −
∫

Στ

dnx0 ζ
k
(bτ )(~x)Hk(~x)

= −(~P (ζ) + ~H(ζ))

=: 〈Jτ (ϕ,Π, τ, P ), ζ〉 , ζ ∈ diff(Στ ) (4.5)

so that, for ζ, ζ ′ ∈ diff(Στ ), we have
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{Jτ (ζ),Jτ (ζ ′)} = { ~H(ζ), ~H(ζ ′)} = ~H([ζ, ζ ′]) , (4.6)

as can be checked by direct computation using the fact that ζj(~x), ζ ′k(~x′) do not depend on

the embeddings and the Poisson bracket for the spatial diffeomorphism constraint. Thus, the

map Jτ = J̃H
∣∣
Στ

provides a representation of the algebra of spatial diffeomorphisms on the

extended phase space. Consistently, the map (4.5) gives the expected lift of the shift vector into

the deformation vector tangential to the spatial slice, i.e.

τ̇µ(~x) = {τµ(~x),Jτ (ζ)} = {τµ(~x), ~P (ζ)}

=

∫

Στ

dnx′0 ζ
k(~x′)τν,k(~x

′){τµ(~x), Pν(~x′)}

= τµ,k(~x)ζk(~x) . (4.7)

In other words, being the embedding fixed, we are now “constraining” the lifted action of

the diffeomorphism group on the space of embeddings in such a way that the induced spacetime

diffeomorphism preserves the spatial hypersurface thus yielding an equivariant momentum map

under spatial diffeomorphisms only and not under the full spacetime diffeomorphisms group.

Accordingly, restricting ourselves to the subgroup of spatial diffeomorphisms, the covariant

Gibbs state (3.13) reduces to

ρ
(eq)
bτ

(ϕ,Π, τ, P ) =
1

Z(bτ )
exp

(
−〈bτ , J̃H(ϕ,Π, τ, P )〉

)

=
1

Z(ζ)
exp

(
−〈ζ,Jτ (ϕ,Π, τ, P )〉

)
=: ρ

(eq)
ζ (ϕ,Π, τ, P ) , (4.8)

with

Z(bτ ) =

∫

Υ
D[ϕ,Π, τ, P ] exp

(
−〈bτ , J̃H(ϕ,Π, τ, P )〉

)

=

∫

Υ
D[ϕ,Π, τ, P ] exp

(
−〈ζ,Jτ (ϕ,Π, τ, P )〉

)
= Z(ζ) , (4.9)

and we limit ζ to the subset Ωτ ⊂ gτ = diff(Στ ) such that the above integral converge. Due to

the equivariance of the momentum map Jτ under the action (4.2), the Gibbs statistical state

(4.8) is then an equilibrium state w.r.t. the one-parameter family of spatial diffeomorphisms

generated by the vector field (4.4) associated to ζ ∈ diff(Στ ).

4.2 Time Evolution Gibbs State via Gauge Fixing

As already discussed, the momentum map (2.58) provides on the one hand a representation of the

algebra of spacetime diffeomorphisms on the parametrized phase space of the field theory under
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consideration. On the other hand it also generates the displacement of the spatial hypersurface

embedded in spacetime setting at the same time the correctly evolved Cauchy data for fields

and the constraints on the deformed hypersurface. The corresponding one-parameter subgroup

of diffeomorphisms associated with the Lie algebra element b thus identifies a generalized notion

of “dynamical evolution” w.r.t. which the covariant Gibbs state (3.13) is an equilibrium state.

By this we mean that the vector field ξ(b) associated with b ∈ diff(X ) comes to be the generating

vector field of a foliation of spacetime and the corresponding flow defines a generalized concept

of time evolution.

As expected for generally covariant systems, dynamics and gauge symmetry are deeply in-

tertwined so that no preferred notion of time is available and the Hamiltonian is a combination

of constraints. This makes the connection between the off- and on-shell levels of our covari-

ant statistical analysis quite subtle. In Sec. 3.3 we discussed the possibility of recovering the

micro-canonical description out of the canonical ensemble defined by the generalized Gibbs state

which reduces to the usual delta-like distribution in the thermodynamic limit. However, a still

remaining open question is to understand if a standard “time evolution” equilibrium state can

be defined on-shell on the constraint surface.

At first sight, due to the longstanding puzzle of gauge versus dynamics in generally covariant

theories, it might seem difficult to extract the dynamical evolution of the physical fields as the

Hamiltonian vanishes after imposing the constraints. This issue may be solved by introducing

suitable gauge-fixing conditions such that the gauge evolution is frozen and the dynamics of fields

can be disentangled. Indeed, as discussed in [65, 66], in reparametrization invariant systems

such as relativistic particles, general relativity or any diffeomorphism covariant field theory,

at least one of the gauge-fixing conditions must depend on the time variable. This makes the

application of the Dirac algorithm of constraints and gauge-fixing more delicate. A detailed study

of Hamiltonian formalism for systems with explicitly time-dependent second-class constraints

has been carried out in [67, 68, 69] and reference within.

The key point is that in the case of time-dependent gauge-fixing constraints the correct

dynamical evolution for physical fields on the reduced phase space is not generated by the re-

striction of the original Hamiltonian on the extended phase space – which for reparametrization-

invariant theories vanishes by imposing the constraints – but rather by a new Hamiltonian which

in general would differ from the starting one as determined by the time-dependent Hamilton’s

equations of motions written in terms of the brackets on the reduced phase space induced by

the Dirac bracket. The explicit form of this Hamiltonian of course depends on the details of the

gauge-fixing conditions.
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Following the strategy of [67, 68, 69], let us specialize the main steps of the construction

to the general setting of parametrized field theories we are interested in the present paper.

Let then consider the parametrized phase space of our theory Υ = T ∗Yτ × T ∗EmbG(Σ,X )

with canonical variables (ϕA(~x),ΠA(~x), τµ(~x), Pµ(~x)), A = 1, . . . , N , µ = 0, . . . , n, first-class

constraints Hµ = Pµ +H(ϕ)
µ ≈ 0 generating gauge symmetries, and Hamiltonian H(ξ) given in

(2.58). The canonical variables on Υ can be split into two disjoint sets (ϕA,ΠA) and (τµ, Pµ),

the former being the physical field content of the theory (and their conjugate momenta) while

the latter are the auxiliary field variables resulting from the parametrization procedure at the

canonical level. These are the canonical variables we would like to eliminate by gauge-fixing.

To this aim, let us introduce the gauge-fixing conditions of the form

χµ = τµ − Fµ(ϕA, λ) , µ = 0, . . . , n (4.10)

where the Fµ are certain functions depending only on the configuration field variables ϕA as

well as on the time parameter19 such that the conditions χµ = 0 provide us with a complete set

of gauge-fixing constraints. This means that the set of all constraints that we will collectively

denote as ψI = (Hµ, χν) is now a second-class set (i.e., {Hµ, χν} 6≈ 0), and the conditions χµ = 0

eliminate all the gauge freedom, namely

{χµ,
∫

dnx0 ε
νHν} = 0 , ∀λ ⇒ εµ = 0 . (4.11)

The new set of constraints ψI = (Hµ, χν) identifies a reduced phase space Υ ⊂ Υ defined by

ψI = 0. Stability of time dependent constraints amounts to require that

dχµ

dλ
=
∂χµ

∂λ
+ {χµ, H} ≈ 0 , (4.12)

where now the weak equality ≈ denotes equality up to terms which vanish on Υ. Requiring

(4.12) to vanish no longer freezes the dynamics. Indeed, denoting by (ϕ̄A, Π̄A) a set of canonical

variables on Υ, i.e., certain smooth functions on Υ which provides a set of coordinates on Υ

when ψI = 0, to determine the restriction of the dynamical evolution to Υ ⊂ Υ amounts to seek

for a Hamiltonian H̄ such that an equation on Υ of the kind

df

dλ
≈ ∂f

∂λ
+ {f, H̄}∗ (4.13)

holds for any function f(ϕ̄A, Π̄A, λ) of some chosen set of variables (ϕ̄A, Π̄A). Here, {·, ·}∗ denotes

the Dirac bracket defined by

{·, ·}∗ := {·, ·} − {·, ψI}CIJ{ψJ , ·} (4.14)

19Here by time we mean the evolution parameter entering the canonical formulation of the theory.
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with CIJ = (C)−1
IJ the inverse of the matrix C whose entries are given by the Poisson brackets

of all constraints, say CIJ = {ψI , ψJ}20. As by construction {f, ψI}∗ = 0 holds strongly for

any second class constraint ψI and any function f on Υ, all constraints (now second class) can

be imposed strongly inside the bracket to eliminate the corresponding number of variables and

obtain a well-defined induced bracket on Υ.

Therefore, the crucial point is to look for the Hamiltonian H̄ which generates dynamical

evolution equations written in terms of the Dirac bracket. The corresponding trajectories in Υ

project onto trajectories in Υ lying in Υ for all time as implied by the stability of the constraints
dψI
dλ ≈ 0. As discussed in [67, 68, 69], the Hamiltonian H̄ is given by

H̄ = H −
∫

Σ
dnx0

∂Fµ

∂λ
Pµ , (4.15)

i.e., in general, it would be different from just H restricted on Υ which in the case of generally

covariant systems under consideration would actually vanish by restricting on Υ where ψI = 0

and hence it does not give the correct dynamics for the variables (ϕ̄A, Π̄A). To show (4.15) let

us notice that since the gauge-fixing conditions (4.10) commute (strongly) among themselves,

there exists a canonical transformation (ϕA,ΠA, τ
µ, Pµ) 7→ (ϕ̄A, Π̄A, Q̄

µ, P̄µ) such that Q̄µ = χµ.

The generating function of such a transformation is given by

F(ϕA, τµ, Π̄A, P̄µ, λ) = ϕAΠ̄A +
(
τµ − Fµ(ϕA, λ)

)
P̄µ , (4.16)

so that we have 



Q̄µ = ∂F
∂P̄µ

= τµ − Fµ(ϕA, λ) = χµ

ϕ̄A = ∂F
∂Π̄A

= ϕA

Pµ = ∂F
∂τµ = P̄µ

ΠA = ∂F
∂ϕA

= Π̄A − ∂Fµ

∂ϕA
P̄µ

(4.17)

and Hamiltonian given by

H̄ = H +

∫

Σ
dnx0

∂F

∂λ
= H −

∫

Σ
dnx0

∂Fµ

∂λ
P̄µ . (4.18)

In the new variables the gauge-fixing conditions now are part of the field configuration variables

and have no explicit λ-dependence anymore, while the constraints Hµ will now become λ-

dependent in general. Hence, stability of the gauge-fixing constraints simply amounts to require

that

˙̄Qµ =
dχµ

dλ
= {χµ, H̄} ≈ 0 . (4.19)

20As ψI = (Hµ, χν) is a second class set, the matrix C is non-degenerate that is det ‖{ψI , ψJ}‖ 6= 0.
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As can be checked by direct computation, from the constraint algebra it follows that the matrix

C = ‖{ψI , ψJ}‖ takes the block form

CIJ =

(
0 Aµν

−Aµν 0

)
, Aµν = {Hµ, χν} (4.20)

so that for any function f on Υ the Dirac bracket yields

{f, H̄}∗ = {f, H̄}+
∑

µ,ν

(
{f,Hµ}(A−1)µν{χν , H̄} − {f, χµ}(A−1)µν{Hν , H̄}

)

≈ {f, H̄} −
∑

µ,ν

{f, χµ}(A−1)µν{Hν , H̄} , (4.21)

where in the last line we used Eq. (4.19). Now, as Q̄µ = χµ, the second term on the r.h.s. of

(4.21) vanishes if we restrict f = f(ϕ̄A, Π̄A, λ). Thus, for any function f(ϕ̄A, Π̄A, λ) we get

df

dλ
=
∂f

∂λ
+ {f, H̄} ≈ ∂f

∂λ
+ {f, H̄}∗ , (4.22)

which is the desired form (4.13) of the dynamical evolution.

Let us then consider the case in which the functions Fµ do not depend on the fields ϕA but

only on λ, say χµ = τµ−Fµ(λ)21. According to the expressions (4.17), in this case the canonical

variables on Υ are just given by the physical fields and their conjugate momenta, i.e.:

ϕ̄A = ϕA , Π̄A = ΠA . (4.23)

The constraints Hµ = 0 can be then solved to express the momenta Pµ = P̄µ in terms of the

variables (ϕ̄A, Π̄A) yielding Pµ = −H(ϕ)
µ . The new Hamiltonian (4.15) then reads

H̄ = H −
∫

Σ
dnx0 Ḟ

µP̄µ , (4.24)

from which, restricting on Υ and taking into account that H = 0 imposing the constraints, it

follows that

H̄ =

∫

Σ
dnx0 Ḟ

µH(ϕ)
µ . (4.25)

Note that Ḟ 0 and ~̇F respectively play the role of lapse and shift consistently with ξµ(τ(~x)) = τ̇µ

being the deformation vector field of the foliation which after gauge-fixing yields τ̇µ = Ḟµ. In

particular, choosing the gauge

x0 = λ , xk = 0 k = 1, . . . , n (4.26)

21A specific realization of this situation is provided for instance by the gauge choice Fµ = xµ in which the

functions Fµ depend only on λ through the spacetime coordinates xµ.
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the new Hamiltonian (4.25) is nothing but the usual field Hamiltonian

H̄ =

∫

Σ
dnx0H(ϕ)

0 = H(ϕ) , (4.27)

which as such generates the correct dynamics for the field variables (ϕA,ΠA) after gauge-fixing.

Finally, we can define a Gibbs state on Υ given by

ρ
(eq)
F (ϕ,Π) =

1

Z(F )
e−H̄(ϕ,Π) =

1

Z(F )
exp

(
−
∫

Σ
dnx0 Ḟ

µH(ϕ)
µ

)
, (4.28)

with

Z(F ) =

∫

Υ
D[ϕ,Π] e−H̄(ϕ,Π) . (4.29)

This is an equilibrium state w.r.t. the dynamical evolution generated by the Hamiltonian H̄.

In particular, choosing the temporal gauge F 0 = x0, ~F = ~0, we get the standard relativistic

equilibrium state with temperature given by the inverse of the lapse.

4.3 On the Thermodynamic Characterization of Covariant Equilibrium

In this section we comment on the relation between the generalized covariant Gibbs state for

parametrized field theories presented in this work and the thermodynamic characterization of

covariant statistical equilibrium arising in previous investigations based on the thermal time hy-

pothesis. Inspired by the Tomita-Takasaki theorem in algebraic quantum field theory [6], thermal

time hypothesis [3, 5] states that timeless evolution is given by the modular one-parameter flow

of automorphisms of the covariant space algebra of the system, induced by any modular thermal

state in the algebra of the gauge invariant observables of the theory. The essence of thermal time

thus relies on a fundamental reinterpretation of the relation between equilibrium states and time

flow according to which any statistical state ρ is in equilibrium w.r.t. its own modular flow. The

modular Hamiltonian H = − log ρ generates a one-parameter group of transformations which

defines the time flow associated to the state ρ. In particular, physical equilibrium states are

those whose thermal time identifies a flow in spacetime [7], thus providing a thermodynamical

characterization of the notion of time experienced by an observer [3].

Similarly, for any Lie algebra element ξ the co-momentum map H(ξ) defined in (2.58) can

be thought of as the thermal modular Hamiltonian associated with the covariant Gibbs state

(3.13), namely H(ξ)(ϕ,Π, τ, P ) = −〈ξ, J̃H(ϕ,Π, τ, P )〉 = log ρ
(eq)
ξ (ϕ,Π, τ, P ). The correspond-

ing thermal flow identifies a one-parameter group on Υ ≡ T ∗Yτ × T ∗EmbG(Σ,X ) generated by

the Hamiltonian vector field XH satisfying

ρ
(eq)
ξ iXH ω̃ = dρ

(eq)
ξ or equivalently iXH ω̃ = d log ρ

(eq)
ξ = dH(ξ) , (4.30)
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where ω̃ is the symplectic structure on Υ given in (2.33) and, with a slight abuse of notation, we

still denote by d the exterior differential on the extended parametrized phase space of fields al-

though it should not be confused with that on spacetime. More explicitly, as already anticipated

in Sec. 2.5, the equations of motion associated to the Hamiltonian H(ξ) are given by

ϕ̇A(~x) = {ϕA(~x), H(ξ)} =

∫

Σ
dnx′0ξ

ν(τ(~x ′)){ϕA(~x),H(ϕ)
ν (~x ′)} = ξν(τ(~x))

δH(ϕ)
ν

δΠA
, (4.31)

Π̇A(~x) = {ΠA(~x), H(ξ)} =

∫

Σ
dnx′0ξ

ν(τ(~x ′)){ΠA(~x),H(ϕ)
ν (~x ′)} = −ξν(τ(~x))

δH(ϕ)
ν

δϕA
, (4.32)

τ̇µ(~x) = {τµ(~x), H(ξ)} =

∫

Σ
dnx′0ξ

ν(τ(~x ′)){τµ(~x), Pν(~x ′)} = ξµ(τ(~x)) , (4.33)

Ṗµ(~x) = {Pµ(~x), H(ξ)} ≈
∫

Σ
dnx′0ξ

ν(τ(~x ′)){Pµ(~x), Pν(~x ′)} = 0 , (4.34)

so that the vector field

XH = ϕ̇A
δ

δϕA
+ τ̇µ

δ

δτµ
+ Π̇A

δ

δΠA
+ Ṗµ

δ

δPµ

= ξµ(τ(~x))

[(
δH(ϕ)

µ

δΠA

)
δ

δϕA
−
(
δH(ϕ)

µ

δϕA

)
δ

δΠA
+

δ

δτµ

]
, (4.35)

generates the correct dynamical evolution for the fields as well as the constraints (see Eq. (2.61)).

In particular, regarding Υ as a bundle over Emb(Σ,X ) whose fiber above τ ∈ Emb(Σ,X ) is the

field phase space T ∗Yτ coordinatized by the spatial matter fields and their conjugate momenta,

we see from (4.33) that the above vector field restricted to Emb(Σ,X ) generates a one-parameter

curve of embeddings c : R → Emb(Σ,X ) by c(λ) = τ(λ) which in turn identifies a slicing

sX (~x, λ) = τ(λ)(~x) in spacetime generated by the vector field ξX (τ(~x)). The corresponding

curve cτ (λ) = (ϕ(λ),Π(λ)) in T ∗Yτ identifies then a compatible G-slicing of the field space.

Therefore, as schematically reported in Fig. 1, the thermal flow associated to the Gibbs state

(3.13) with thermal time parameter λ defines a one-parameter group of bundle automorphisms as

well as a compatible slicing of spacetime so that the Lie algebra-valued temperature ξ identifies

a direction in spacetime along which geometry and matter fields evolve.

Moreover, along the line of [7], we can define a local temperature function, i.e. a map

T : Υ× Σ 7→ R, given by

T ((ϕ,Π, τ, P ), ~x) = T (ϕ(~x),Π(~x), τ(~x), P (~x)) := |ξ(τ(~x))|−1 , (4.36)

with the vector field ξµ(τ(~x)) playing the role of multi-fingered time. Consistently, with the

gauge choice F 0 = x0 discussed in the previous section, the above temperature function reduces

on-shell to the inverse of the lapse function, say T = 1
ẋ0 , thus locally yielding the rate of change

of the thermal time parameter λ and the coordinate time x0.
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of di↵eomorphisms. Let then (x0, x1, . . . , xn) be a chart on X adapted to ⌧ , i.e.
such that ⌃⌧ is locally a level set of x0. Denoting by (',⇧, ⌧, P ) a point in
the canonical parametrized phase space T ⇤Ỹ⌧ = T ⇤Y⌧ ⇥ T ⇤EmbG(⌃, X ), the
canonical symplectic structure !̃⌧ on T ⇤Ỹ⌧ reads as [?]

!̃⌧ (',⇧, ⌧, P ) =

Z

⌃⌧

�
d'A ^ d⇧A + d⌧µ ^ dPµ

�
⌦ dnx0 . (2.35)

Following the construction of [?] (cfr. Ch. 5), the multisymplectic structure
on Z̃ induces a presymplectic structure on the space Z̃⌧ of sections of the bundle
Z̃⌧ ! ⌃⌧ given by

⌦̃⌧ (�)(V, W ) =

Z

⌃⌧

�⇤(iW iV ⌦̃) , � 2 Z̃⌧ , V, W 2 T�Z̃⌧ (2.36)

which in turn is related to !̃⌧ via ⌦̃⌧ = R⇤
⌧ !̃⌧ , where R⌧ is the bundle map

R⌧ : Z̃⌧ ! T ⇤Ỹ⌧ relating in adopted coordinates the momenta ⇧A and Pa

respectively to the temporal components of the multimomenta pµ
A and %µ

a as

⇧A = p0
A � � , Pa = %0

a � � . (2.37)

In particular [?], ker T�R⌧ = ker ⌦̃⌧ (�) and the canonical parametrized phase
space T ⇤Ỹ⌧ is thus isomorphic to the quotient Z̃⌧/ ker ⌦̃⌧ .

Let now � 2 Z̃ ⌘ � (X , Z̃) be a section of the bundle Z̃ over X , and let
↵Z̃ : Z̃ ! Z̃ be a covariant canonical transformation covering a di↵eomorphism
↵X : X ! X whose induced action on sections is given by ↵Z̃ (�) = ↵Z̃ �� �↵�1

X
(cfr. Eq. (2.17)). The corresponding transformation on Z̃⌧ ⌘ � (⌃⌧ , Z̃ ) given by

↵Z̃⌧
: Z̃⌘�1�⌧̃ �! Z̃↵X̃ (⌘)�1�⌧̃

� 7�! ↵Z̃⌧
(�) = ↵Z̃ � � � ↵�1

⌧ , (2.38)

with ↵X̃ (⌘) defined in (2.18) and ↵⌧ := ↵X |⌃⌧ is a (special) covariant canonical
transformation relative to the presymplectic 2-form (2.36) if ↵Z̃ is a (special)
covariant canonical transformation [?].

The covariant multimomentum map (2.26) associated to the G-action on Z̃
will then induce a so-called (parametrized) energy-momentum map on Z̃⌧

defined by

Ẽ⌧ : Z̃⌧ �! g⇤ , Ẽ⌧ (�, ⌘) = Ẽ⌘�1�⌧̃ (�) :=

Z

⌃⌧

�⇤ hJ̃ , ⇠i , (2.39)

which is Ad⇤-equivariant w.r.t. the action (2.38), namely

hẼ⌧ (�, ⌘), Ad�1
↵ ⇠i = h↵⇤

Z̃⌧

⇥
Ẽ⌧ (�, ⌘)

⇤
, ⇠i . (2.40)

(�1)
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Figure 1: Slicing of spacetime and of the field bundles over it generated by the thermal flow associated to the Gibbs

state (3.13). The Lie algebra-valued temperature ξ thus defines a generalized notion of direction of dynamical

evolution characterized by a “thermal time parameter” λ.

Another similarity with thermal time hypothesis relies on the inbuilt observer dependence of

the corresponding notion of equilibrium. In our case, in fact, the Lie algebra element ξ identifies a

foliation and the associated one-parameter flow in spacetime characterizes a direction of evolution

associated with the corresponding canonical observer, as can be seen in adapted coordinates to

the foliation. Changing element in the Lie algebra would then correspond to change observer

by picking up a different foliation identified by the corresponding one-parameter subgroup of

diffeomorphisms. Two main differences can be pointed out however in comparing the above

analysis with the framework of thermal time hypothesis. First of all, the generalized Gibbs state

(3.13) is defined on the parametrized canonical phase space and not on the space of solutions

of the field equations. Only after introducing suitable gauge choices the thermal flow associated

with the gauge-fixed Hamiltonian generates the on-shell dynamics for the matter fields (see

Sec. 4.2). In this sense, our framework can be thought of as an off-shell generalization of

the previous setting which allows us to construct an equilibrium state w.r.t. (one-parameter

subgroups of) spacetime diffeomorphisms which in turn identify a physical thermal flow in

spacetime. Moreover, in the present setting the Lie algebra-valued temperature – which plays

the role of a global temperature – is intrinsically related with the notion of local temperature as

the corresponding Lie algebra element is realized as the deformation vector field of the spacetime

foliation induced by the generating vector field of the G-action on the parametrized phase space,

where as expected the dependence on the embeddings plays a fundamental role in connecting
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the phase space and spacetime pictures.

5 Conclusions and Outlook

In this work, we consider the problem of defining statistical mechanics and thermodynamics

for generally covariant field theories, where both dynamics and gauge symmetry are encoded

in (first-class) constraints, hence no standard notions of time and energy are available. The

key issue consists in the definition of statistical equilibrium, beyond time translations, for a

symmetry group flow given by spacetime diffeomorphisms. Souriau’s symplectic reformulation

of statistical equilibrium for Hamiltonian Lie group actions provides a useful conceptual and

formal setting in this sense, generalizing the standard notion of time-translation equilibrium.

A straightforward application of Souriau’s Lie group thermodynamics to the case of a fully

constrained system leads to define a Gibbs-like state with respect to the gauge group action

generated by the first-class constraints. In this framework, the Hamiltonian Lie group action

is characterized by the vanishing of the associated momentum map. The vanishing momentum

map is equivalent to a first class constraint, reflecting the presence of a gauge symmetry for the

system, and the constraint surface is identified with the zero-level set of the associated momen-

tum map [70, 23, 26].

However, in generally covariant theories the super-Hamiltonian and super-momentum con-

straints do not close a genuine Lie algebra which reflects into the non-equivariance of the

energy-momentum map preventing a straightforward representation of the algebra of the space-

time diffeomorphism group. The application of Jaynes’ entropy maximization principle [20] with

constant mean values of the first-class constraints necessarily leads to a Gibbs-like state which,

due to the non-equivariance of the energy-momentum map, can not be an equilibrium state

under the gauge flow generated by the constraints. In terms of the classification of different

kinds of Gibbs states given in [71], this state would correspond to a thermodynamical rather

than dynamical statistical state. In particular, it would not be of equilibrium with respect to

a one-parameter group of spacetime diffeomorphisms, but at most only with respect to spatial

diffeomorphisms for which there is a momentum map induced by the energy-momentum map

restricted to the Lie algebra of spatial diffeomorphisms (cfr. Eqs. (2.54) and (4.5)).

We overcome this issue by extending our multi-symplectic phase space via the introduction of

covariance fields. This allows us to recover the action of the spacetime diffeomorphism group

by means of the observable Hamiltonian functional H(ξ) defined in (2.58) which identifies a

equivariant momentum map homomorphically relating the diffeomorphism algebra to the Pois-

son bracket algebra of functionals on the parametrized phase space. The derivation of a Gibbs
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state associated to this equivariant momentum map via the prescriptions of Lie group ther-

modynamics then provides us with a dynamical (in the sense of [71]) equilibrium state on the

parametrized phase space. Such a state is of equilibrium with respect to the one-parameter

group of diffeomorphisms generated by the vector field ξX associated to ξ ∈ g = diff(X ). In this

sense, it defines a spacetime covariant notion of thermodynamical equilibrium.

The gauge character of spacetime diffeomorphisms implies a radical conceptual shift in the

definition of equilibrium state with respect to Souriau’s work. By replacing a dynamical symme-

try with a gauge one, we move our analysis from the fully reduced symplectic space of motions

(on-shell) to the unconstrained extended phase space of the system (off-shell). While being

defined off-shell, the covariant Gibbs state is by construction an observable of the theory, and it

encodes, via the covariant momentum map functional, all the dynamical information carried by

the given parametrized field theory: its canonical Hamiltonian, its initial value constraints, its

gauge freedom, and its stress energy-momentum tensor [21]. Therefore, we expect the off-shell

equilibrium to play a role similar to a generating functional partition function in field theory,

with a Gibbs state corresponding to a “soft” imposition of the constraints of the theory. This

might allow for a probabilistic approach to symplectic reduction, a further interesting perspective

which we leave open for future investigation.

The proposed result points to a deep connection between geometrical methods, information

theory and field theories. We expect our approach to open the road for a spacetime covariant

formulation of statistical mechanics, possibly capable of describing the fluctuations of the gravi-

tational field in a general relativistic context (see e.g. [17, 72]). From an information-geometric

viewpoint, we further expect the derived covariant Gibbs state functional to provide a useful

tool for exploring a statistical generalization of symplectic reduction in field theory, as well as a

further support to the use of momentum map and Lie group formalism in the study of covariant

generative models in machine learning [73].

As our original motivation is general relativity, the present analysis needs to be extended

to gravity for which a covariant Hamiltonian formalism has been extensively studied in the last

years, see e.g. [44, 30, 74, 75, 76, 77] and references within. However, the intrinsic parametrized

nature of gravity [78] makes the achievement of a phase space representation of spacetime dif-

feomorphisms a non-trivial task. Useful insights in this respect may be found in the work by

Isham and Kuchař [38].

A further interesting and closely related aspect to explore consists in including boundaries

in our covariant description (see e.g. [79, 80, 81] for the analysis of boundaries in the framework

of multi-symplectic field theories). The inclusion of boundaries would be needed to identify a

40



notion of subsystems which is crucial in any thermodynamical analysis. As remarked above, in

this covariant setting the constraints are beautifully encoded in the momentum map associated

with the gauge group action on the field space. The latter plays a key role in the construc-

tion of the covariant Gibbs state. As shown in [82], in presence of boundaries, the kinematical

constraint algebra can be written as conservation laws for boundary charges. These charges

would then enter the boundary momentum map out of which a statistical mechanic framework

for the on-shell boundary modes can be constructed. This may open fruitful connections with

recent work on boundary modes in quantum gravity [83]. Of particular interest would be the

case in which the finite boundaries describe horizons, with potential application to black hole

thermodynamics.

From a broader point of view, the application of our covariant statistical mechanics formalism

to discrete gravity models may provide interesting insights to the study of coarse-graining ap-

proaches and the continuum limit from a thermodynamical perspective, as initiated for instance

in [84, 85].
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