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Abstract. We consider the problem to identify the most likely flow
in phase space, of (inertial) particles under stochastic forcing, that is
in agreement with spatial (marginal) distributions that are specified at
a set of points in time. The question raised generalizes the classical
Schrödinger Bridge Problem (SBP) which seeks to interpolate two spec-
ified end-point marginal distributions of overdamped particles driven by
stochastic excitation. While we restrict our analysis to second-order dy-
namics for the particles, the data represents partial (i.e., only positional)
information on the flow at multiple time-points. The solution sought, as
in SBP, represents a probability law on the space of paths this closest to
a uniform prior while consistent with the given marginals. We approach
this problem as an optimal control problem to minimize an action in-
tegral a la Benamou-Brenier, and derive a time-symmetric formulation
that includes a Fisher information term on the velocity field. We un-
derscore the relation of our problem to recent measure-valued splines
in Wasserstein space, which is akin to that between SBP and Optimal
Mass Transport (OMT). The connection between the two provides a
Sinkhorn-like approach to computing measure-valued splines. We envi-
sion that interpolation between measures as sought herein will have a
wide range of applications in signal/images processing as well as in data
science in cases where data have a temporal dimension.

Keywords: Schrödinger bridge ·Optimal mass transport · Optimal con-
trol · Multi-marginal.

1 Introduction

In 1931/32, in an attempt to gain insights into the stochastic nature of quantum
mechanics, Schrödinger [22,23] raised the following question regarding a system
of a large number of classical independent identically distributed (i.i.d.) Brown-
ian particles. He hypothesized that this “cloud” of particles is observed to have
(empirical) distributions ρ0(x0) and ρ1(x1) at two points in time t0 = 0 and
t1 = 1, respectively, and further that ρ1(x1) differs from what is dictated by the
law of large numbers, i.e., that

ρ1(x1) 6=
∫

Rn

q(t0, x0, t1, x1)ρ0(x0)dx0,
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where

q(s, x, t, y) = (2π)−n/2(t− s)−n/2 exp

(

−1

2

‖x− y‖2
(t− s)

)

denotes the Brownian transition probability kernel. Schrödinger then sought to
find the “most likely” evolution for the cloud of particles to have transitioned
from ρ0 to ρ1. In the language or large deviation theory (which was not in place
at the time), Schrödinger’s question amounts to seeking a probability law on the
path space that is in agreement with the two marginals while being the closest to
the Brownian prior in the sense of relative entropy [12]. The solution is known as
the Schrödinger bridge since the law “bridges” the two given end-point marginal
distributions.

Renewed interest in the Schrödinger Bridge Problem (SBP) has been fueled
by its connections to the Monge-Kantorovic Optimal Mass Transport (OMT)
and a wide range aplications in image analysis, stochastic control, and physics
[18,19,6,13,4,9,21]. More specifically, SBP, seen as a suitable regularization of
OMT, provides a natural model for uncertainty in the transport of distributions
as well as a valuable computational tool for interpolating distributional data.

In this work we consider a natural generalization of the Schrödinger bridge
theory to address the situation where the data consist of possible partial marginal
distributions at various points in time. Thus, we postulate a similar experiment
with stochastic particles. However, in contrast to the standard SB theory, we
concieve these particles to obey second order stochastic differential equations
with Brownian stochastic forcing that accounts for random acceleration along
trajectories in phase space (see Section 2). This new setting connects with recent
results on measure-valued splines [3,1,8], which are general notions of splines on
the Wasserstein space of measures. In this short paper, we provide a summary
of the theory. A more detailed account will appear in a forthcoming publication
(in preparation).

2 Multi-marginal Schrödinger bridges for inertial

particles

Suppose we are given a large number of independent inertial particles driven by
white noise, that is, they follow the dynamics

dx = vdt, (1a)

dv = dw, (1b)

where dw denotes standard Brownian motion and (x, v) is the phase space (x
denoting position and v velocity). The flow of probability densities µt(x, v) in
phase space obeys the Fokker-Planck equation

∂µ

∂t
+ v · ∇xµ− 1

2
∆vµ = 0, (2)

with initial condition µ0 at time t = 0. The law of large numbers dictates that,
when the number of particles is large enough, the distributions of the particles
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will be closed to µt. The data of the problem we consider will, as in the stan-
dard SB problem, be inconsistent with the Fokker-Planck equation, and viewed
as a “atypical/rare” event. In standard SB setting, where only two end-point
marginals are specified, the “most likely” evolution amounts to an adjustment
of the Fokker-Planck equation by adding a suitable drift term to match the two
marginals. For inertial particles driven by white noise, the generator is hypoel-
liptic [16] and the SB theory carries over to matching marginals in phase space.

Throughout, we suppose that we have only access to position x and that em-
pirical marginals ρ0 = Projx µ0, ρ1 = Projx µ1 represent projections, accordingly.
The extra degree of freedom, since µ’s are partially specified, make the corre-
sponing multi-marginal problem nontrivial. Specifically, we seek the most like
paths the particles have taken that match positional distributions ρ0, ρ1, · · · , ρN
at times 0 = t0 < t1 < · · · < tN = 1. To this end, we let Q be the law of (1) (on
path space) and we let P be the any other law. We seek the minimizer of

H(P , Q) =

∫

dP log
dP
dQ (3)

over all laws P that are consistent with the marginals ρ0, ρ1, · · · , ρN .

To guarantee the boundedness of the relative entropy H between P and the
prior process Q, P has to be of the form

dx = vdt, (4a)

dv = adt+ dw, (4b)

where a is a suitable drift that may depend on the current and past values of
the process state. Invoking Girsanov’s theorem [14,17,11,7], we obtain that

H(P , Q) = EP

{
∫ 1

0

‖a(t)‖2dt
}

=

∫ 1

0

∫

‖a‖2µdxdvdt.

Thus, we arrive at the optimal control formulation

min E

{
∫ 1

0

‖a(t)‖2dt
}

, (5a)

dx = vdt, (5b)

dv = adt+ dw, (5c)

x(ti) ∼ ρi, i = 0, 1, . . . , N. (5d)

The difference to the standard Schrödinger bridge problem lies in the constraint
(5d); multiple marginals are partially specified. The existence and uniqueness of
the solution follow from the fact that it is a strongly convex optimization problem
on path space measures. The argument is similar to the standard argument in
SB theory [12,18,19,5] and will be presented in an extended version of the paper.
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By utilizing the Fokker-Planck equation, we can rewrite the above as

min

∫ 1

0

∫

‖a‖2µdxdvdt, (6a)

∂µ

∂t
+ v · ∇xµ+∇v · (aµ)−

1

2
∆vµ = 0, (6b)

∫

µti(x, v)dv = ρi(x), i = 0, 1, . . . , N. (6c)

Here
∫

µti(x, v)dv = ρi(x) since Projx(µti) = ρi.
Now let â = a− 1

2
∇v logµ, then the diffusion term in (6b) can be absorbed

into the convection terms, and then the cost becomes
∫ 1

0

∫

‖a‖2µdxdvdt =

∫ 1

0

∫

‖â+ 1

2
∇v logµ‖2µdxdvdt

=

∫ 1

0

∫
{

‖â‖2µ+
1

4
‖∇v logµ‖2µ

}

dxdvdt

+

∫ 1

0

∫

〈â,∇v logµ〉µdxdvdt.

Direct calculation yields
∫ 1

0

∫

〈â,∇v logµ〉µdxdvdt =
∫

{µ1 logµ1 − µ0 logµ0}dxdv, (7)

which only depends on the two end distributions. Thus, we need to consider

min

∫ 1

0

∫
{

‖â‖2µ+1

4
‖∇v logµ‖2µ

}

dxdvdt+

∫

{µ1 logµ1−µ0 log µ0}dxdv,(8a)

∂µ

∂t
+ v · ∇xµ+∇v · (âµ) = 0, (8b)

∫

µti(x, v)dv = ρi(x), i = 0, 1, . . . , N. (8c)

A similar formulation with a Fisher information term has been studied in [25,6,13,20]
for standard Schrödinger bridge problems. However, in the standard setting, the
term

∫

{µ1 logµ1−µ0 logµ0}dxdv can be dropped since the full-state marginal
distributions are already specified. It important to note that, compared to (6),
(8) is time symmetric.

3 Connections to measure-valued splines

A variational formulation [15] of splines going through {x1, x2, . . . , xN} in Eu-
clidean space is given by

min

∫ 1

0

‖ẍ‖2dt

x(ti) = xi, i = 0, 1, . . . , N,
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where the minimization is taken over all twice-differentiable trajectories that
satisfy the constraints. This formation has been generalized to the Wasserstein
space of measures [3,1]. In particular, the fluid dynamic formulation for measure-
valued splines in [3] with marginals ρ0, ρ1, · · · , ρN at 0 = t0 < t1 < · · · < tN = 1
reads

inf

∫ 1

0

∫

‖a‖2µdxdvdt, (9a)

∂µ

∂t
+ v · ∇xµ+∇v · (aµ) = 0, (9b)

∫

µti(x, v)dv = ρi(x), i = 0, 1, . . . , N. (9c)

We note that the above formulation is almost the same as (6) except for a missing
diffusion term in the constraint. This resembles the relation between standard
Schrödinger bridges and optimal mass transport [18,19,5].

Indeed, a zero-noise limit argument follows. If we replace the dynamics (1)
of the inertial particles by

dx = vdt, (10a)

dv =
√
ǫdw, (10b)

then the multi-marginal SB problem becomes

min

∫ 1

0

∫

‖a‖2µdxdvdt, (11a)

∂µ

∂t
+ v · ∇xµ+∇v · (aµ)−

ǫ

2
∆vµ = 0, (11b)

∫

µ(ti, x, v)dv = ρi(x), i = 0, 1, . . . , N. (11c)

The “slowed down” formulation (11) reduces to (6) when we take the limit ǫ → 0.
Therefore, we establish the measure-valued spline as a zero-noise limit of a multi-
marginal SB, and SB as a regularized version of measure-valued spline. Rigorous
proof of these conclusions will be presented in a forthcoming paper.

4 Algorithms

The Sinkhorn [24,10] algorithm is a natural iterative scheme in SB problems.
Due to its efficiency and simplicity, it has became a workhorse for data science
applications of optimal transport [10]. In this section, we develop a Sinkhorn-
type algorithm for multi-marginal Schrödinger bridge problems. The relation
established in Section 3 implies that the same algorithm can also be used to
approximate measure-valued splines.
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Using a measure decomposition argument, the Schrödinger problem (11) can
be rewritten as

min J(π) :=

N−1
∑

i=0

KL(πi,i+1 | e−Ci,i+1/ǫ) (12a)

∫

πi,i+1dxi+1dvi+1 = µi, i = 0, . . . , N − 1 (12b)

∫

πi,i+1dxidvi = µi+1, i = 0, . . . , N − 1 (12c)

∫

µidvi = ρi, i = 0, . . . , N (12d)

where KL(α|β) =
∫

α log α
β − α+ β and

Ci,i+1(xi, vi, xi+1, vj+1) = (12‖xi+1 − xi − vi‖2 − 12〈xi+1 − xi − vi, vi+1 − vi〉
+4‖vi+1 − vi‖2)/(ti+1 − ti).

The optimization variables are joint distributions on the consecutive time points
over the phase space. Since the cost is a summation of relative entropies and the
constraints are convex, a natural algorithm is that of Bregman projections [2].

Define convex constraint sets

K0 = {
∫

π01dx1dv1 = µ0,

∫

µ0dv0 = ρ0},

KN = {
∫

πN−1,NdxN−1dvN−1 = µN ,

∫

µNdvN = ρN}, and

Ki = {
∫

πi,i+1dxi+1dvi+1 = µi,

∫

πi−1,idxi−1dvi−1 = µi,

∫

µidvi = ρi},

for i = 1, . . . , N − 1, then the Bregman iterative projection becomes

πn = PKL
Kin

(πn−1), n = 1, 2, 3, . . .

where in enumerates {0, 1, . . . , N} repeatedly. The projection operator is

PKL
K (π̄) := argminπ∈K KL(π | π̄). (13)

These projections can be derived via Lagrangian method. The projections to
K0,KN are easier and the projections to K1, . . . ,KN−1 are more involved.
Specifically,

PK0
: π01 =

ρ0π̄01
∫

π̄01dv0dx1dv1

PKN
: πN−1,N =

ρN π̄N−1,N
∫

π̄N−1,NdvNdxN−1dvN−1
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whereas for PKi
, i = 1, . . . , N − 1:

πi−1,i=
ρi(

∫

π̄i−1,idxi−1dvi−1

∫

π̄i,i+1dxi+1dvi+1)
1/2

∫

π̄i−1,idxi−1dvi−1

∫

(
∫

π̄i−1,idxi−1dvi−1

∫

π̄i,i+1dxi+1dvi+1)1/2dvi
π̄i−1,i

πi,i+1=
ρi(

∫

π̄i−1,idxi−1dvi−1

∫

π̄i,i+1dxi+1dvi+1)
1/2

∫

π̄i,i+1dxi+1dvi+1

∫

(
∫

π̄i−1,idxi−1dvi−1

∫

π̄i,i+1dxi+1dvi+1)1/2dvi
π̄i,i+1

In real implementation, we need to discretize the phase space over a grid. Af-
ter discretization, the algorithm only involves matrix multiplication, pointwise-
division, multiplication, square root, and therefore can be parallelized easily. The
linear convergence rate is guarantee by the property of Bregman projections [2].
Our algorithm should be compared to that developed in [1]. A major difference
is that our algorithm doesn’t require discretization over the time domain.

5 Conclusion

We considered a natural extension of the Schrödinger bridge problems to multi-
marginal partially observable setting. We focused on inertial particles, but more
general dynamics can be examined similarly. We discussed the physical meaning,
stochastic control formulation and several other aspects of the problems. Just
like in the standard SB problem, it has a natural relation to the measure-valued
spline theory. An efficient algorithm was also developed, which makes ready for
possible applications. We envision that this line of research is going to spark
interest in optimal transport theory and application with multiple time points.
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1. Benamou, J.D., Gallouët, T., Vialard, F.X.: Second order models for optimal trans-
port and cubic splines on the Wasserstein space. arXiv preprint arXiv:1801.04144
(2018)

2. Benamou, J.D., Carlier, G., Cuturi, M., Nenna, L., Peyré, G.: Iterative bregman
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