Skip to main content

Cognitive Module Networks for Grounded Reasoning

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11654))

Abstract

The necessity for neural-symbolic integration becomes evident as more complex problems like visual question answering are beginning to be addressed, which go beyond such limited-domain tasks as classification. Many existing state-of-the-art models are designed for a particular task or even benchmark, while general-purpose approaches are rarely applied to a wide variety of tasks demonstrating high performance. We propose a hybrid neural-symbolic framework, which tightly integrates the knowledge representation and symbolic reasoning mechanisms of the OpenCog cognitive architecture and one of the contemporary deep learning libraries, PyTorch, and show how to implement some existing particular models in our general framework.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.neural-symbolic.org/.

  2. 2.

    https://github.com/singnet/semantic-vision/tree/master/experiments/opencog/cog_module.

References

  1. Duch, W., Oentaryo, R.J., Pasquier, M.: Cognitive architectures: where do we go from here. In: Proceedings of 1st AGI Conference. Frontiers in Artificial Intelligence and Applications, vol. 171, pp. 122–136 (2008)

    Google Scholar 

  2. Besold, T.R., et al.: Neural-symbolic learning and reasoning: a survey and interpretation. arXiv preprint, arXiv:1711.03902 (2017)

  3. Manhaeve, R.M., et al.: DeepProbLog: neural probabilistic logic programming. arXiv preprint, arXiv:1805.10872 (2018)

  4. Overlan, M.C., Jacobs, R.A., Piantadosi, S.T.: Learning abstract visual concepts via probabilistic program induction in a Language of Thought. Cognition 168, 320–334 (2017)

    Article  Google Scholar 

  5. Mascharka, D., Tran, Ph., Soklaski, R., Majumdar, A.: Transparency by design: closing the gap between performance and interpretability in visual reasoning. arXiv preprint, arXiv:1803.05268 (2018)

  6. Fodor, J.A., Pylyshyn, Z.W.: Connectionism and cognitive architecture: a critical analysis. Cognition 28(1–2), 3–71 (1988)

    Article  Google Scholar 

  7. Singh, J., Ying, V., Nutkiewicz, A.: Attention on attention: architectures for Visual Question Answering (VQA). arXiv preprint, arXiv:1803.07724 (2018)

  8. Johnson, J.: Inferring and executing programs for visual reasoning. arXiv preprint, arXiv:1705.03633 (2017)

  9. Agrawal, A., et al.: Don’t just assume; look and answer: overcoming priors for visual question answering. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 4971–4980 (2018)

    Google Scholar 

  10. Johnson, J., et al.: CLEVR: a diagnostic dataset for compositional language and elementary visual reasoning. arXiv preprint, arXiv:1612.06890 (2016)

  11. Hudson, D.A., Manning, Ch.D.: GQA: a new dataset for real-world visual reasoning and compositional question answering. arXiv preprint, arXiv:1902.09506 (2019)

  12. Goertzel, B.: Perception processing for general intelligence: bridging the symbolic/subsymbolic gap. In: Bach, J., Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS (LNAI), vol. 7716, pp. 79–88. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35506-6_9

    Chapter  Google Scholar 

  13. Goertzel, B.: OpenCog NS: a deeply-interactive hybrid neural-symbolic cognitive architecture designed for global/local memory synergy. In: Proceedings of AAAI Fall Symposium Series FS-09-01, pp. 63–68 (2009)

    Google Scholar 

  14. Potapov, A., Zhdanov, I., Scherbakov, O., Skorobogatko, N., Latapie, H., Fenoglio, E.: Semantic image retrieval by uniting deep neural networks and cognitive architectures. In: Iklé, M., Franz, A., Rzepka, R., Goertzel, B. (eds.) AGI 2018. LNCS (LNAI), vol. 10999, pp. 196–206. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97676-1_19

    Chapter  Google Scholar 

  15. Yi, K., et al.: Neural-symbolic VQA: disentangling reasoning from vision and language understanding. arXiv preprint, arXiv:1810.02338 (2018)

  16. Potapov, A., Belikov, A., Bogdanov, V., Scherbatiy, A.: Differentiable probabilistic logic networks. arXiv preprint, arXiv:1907.04592 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Potapov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Potapov, A., Belikov, A., Bogdanov, V., Scherbatiy, A. (2019). Cognitive Module Networks for Grounded Reasoning. In: Hammer, P., Agrawal, P., Goertzel, B., Iklé, M. (eds) Artificial General Intelligence. AGI 2019. Lecture Notes in Computer Science(), vol 11654. Springer, Cham. https://doi.org/10.1007/978-3-030-27005-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27005-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27004-9

  • Online ISBN: 978-3-030-27005-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics