Skip to main content

Cognitive Model of Brain-Machine Integration

  • Conference paper
  • First Online:
Artificial General Intelligence (AGI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11654))

Included in the following conference series:

Abstract

Brain-machine integration is a new intelligent technology and system, which is a combination of natural intelligence and artificial intelligence. In order to make this integration effective and co-adaptive biological brain and machine should work collaboratively. A cognitive model of brain-machine integration will be proposed. Environment awareness and collaboration approaches will be explored in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shi, Z.: Mind Computation. World Scientific Publishing, Singapore (2017)

    Book  Google Scholar 

  2. DiGiovanna, J., Mahmoudi, B., Fortes, J., et al.: Coadaptive brain-machine interface via reinforcement learning. IEEE Trans. Biomed. Eng. 56(1), 54–64 (2009)

    Article  Google Scholar 

  3. Fukuyama, O., Suzuki, T., Mabuchi, K.: RatCar: a vehicular neuro-robotic platform for a rat with a sustaining structure of the rat body under the vehicle. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2010)

    Google Scholar 

  4. O’Doherty, J.E., Lebedev, M.A., Ifft, P.J., et al.: Active tactile exploration using a brain-machine-brain interface. Nature 479(7372), 228–231 (2011)

    Article  Google Scholar 

  5. Wang, Y.M., Lu, M.L., Wu, Z., et al.: Ratbot: a rat “understanding” what humans see. In: International Workshop on Intelligence Science, in conjunction with IJCAI-2013, pp. 63–68 (2013)

    Google Scholar 

  6. Wu, Z., et al.: Cyborg intelligence: research progress and future directions. IEEE Intell. Syst. 31(6), 44–50 (2016)

    Article  Google Scholar 

  7. Berger, T.W., et al.: A cortical neural prosthesis for restoring and enhancing memory. J. Neural Eng. 8(4) (2011). https://doi.org/10.1088/1741-2560/8/4/046017

    Article  Google Scholar 

  8. Wu, Z., Pan, G., Zheng, N.: Cyborg intelligence. IEEE Intell. Syst. 28(5), 31–33 (2013)

    Article  Google Scholar 

  9. Wu, Z., Zheng, N., Zhang, S., et al.: Maze Learning by hybrid brain-computer systems, Scientific Report, 9 (2016). https://doi.org/10.1038/srep31746

  10. Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Hum. Factors 37(1), 32–64 (1995)

    Article  Google Scholar 

  11. Shi, Z., Zhang, J., Yue, J., Yang, X.: A cognitive model for multi-agent collaboration. Int. J. Intell. Sci. 4(1), 1–6 (2014)

    Article  Google Scholar 

  12. Gray, B.: Collaborating: Finding Common Ground for Multiparty Problems. Jossey-Bass, San Francisco (1989)

    Google Scholar 

  13. Shi, Z., Zhang, J., Yang, X., Ma, G., Qi, B., Yue, J.: Computational cognitive models for brain–machine collaborations. IEEE Intel. Syst. 29, 24–31 (2014)

    Article  Google Scholar 

  14. Maslow, A.H.: Motivation and Personality. Addison-Wesley, Boston (1954, 1970, 1987)

    Google Scholar 

  15. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artif. Intell. 42(2–3), 213–361 (1990)

    Article  MathSciNet  Google Scholar 

  16. Jennings, N.R., Mamdani, E.H.: Using Joint Responsibility to Coordinate Collaborative Problem Solving in Dynamic Environments. AAAI1992, pp. 269–275 (1992)

    Google Scholar 

  17. Zhao, X., Tian, D., Chen, L., Shi, Z.: Reasoning theory for D3L with compositional bridge rules. In: Shi, Z., Leake, D., Vadera, S. (eds.) IIP 2012. IAICT, vol. 385, pp. 106–115. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32891-6_15

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Program on Key Basic Research Project (973) (No. 2013CB329502), National Natural Science Foundation of China (No. 61035003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongzhi Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, Z., Huang, Z. (2019). Cognitive Model of Brain-Machine Integration. In: Hammer, P., Agrawal, P., Goertzel, B., Iklé, M. (eds) Artificial General Intelligence. AGI 2019. Lecture Notes in Computer Science(), vol 11654. Springer, Cham. https://doi.org/10.1007/978-3-030-27005-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27005-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27004-9

  • Online ISBN: 978-3-030-27005-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics