Skip to main content

Exploration Strategies for Homeostatic Agents

  • Conference paper
  • First Online:
Artificial General Intelligence (AGI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11654))

Included in the following conference series:

Abstract

This paper evaluates two new strategies for investigating artificial animals called animats. Animats are homeostatic agents with the objective of keeping their internal variables as close to optimal as possible. Steps towards the optimal are rewarded and steps away punished. Using reinforcement learning for exploration and decision making, the animats can consider predetermined optimal/acceptable levels in light of current levels, giving them greater flexibility for exploration and better survival chances. This paper considers the resulting strategies as evaluated in a range of environments, showing them to outperform common reinforcement learning, where internal variables are not taken into consideration.

Research supported by the Torsten Söderberg Foundation Ö110/17.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bersini, H.: Reinforcement learning for homeostatic endogenous variables. In: From Animals to Animats 3: Proceedings of the Third International Conference on the Simulation of Adaptive Behavior, pp. 325–333 (1994)

    Google Scholar 

  2. Davies, K.J.: Adaptive homeostasis. Mol. Asp. Med. 49, 1–7 (2016). Hormetic and regulatory effects of lipid oxidation products

    Article  Google Scholar 

  3. Keramati, M., Gutkin, B.S.: A reinforcement learning theory for homeostatic regulation. In: Advances in Neural Information Processing Systems, pp. 82–90 (2011)

    Google Scholar 

  4. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014)

    Google Scholar 

  5. Kompella, V.R., Kazerounian, S., Schmidhuber, J.: An anti-hebbian learning rule to represent drive motivations for reinforcement learning. In: del Pobil, A.P., Chinellato, E., Martinez-Martin, E., Hallam, J., Cervera, E., Morales, A. (eds.) SAB 2014. LNCS (LNAI), vol. 8575, pp. 176–187. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08864-8_17

    Chapter  Google Scholar 

  6. Konidaris, G., Barto, A.: An adaptive robot motivational system. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 346–356. Springer, Heidelberg (2006). https://doi.org/10.1007/11840541_29

    Chapter  Google Scholar 

  7. Konidaris, G.D., Hayes, G.M.: An architecture for behavior-based reinforcement learning. Adapt. Behav. 13(1), 5–32 (2005)

    Article  Google Scholar 

  8. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  9. Oubbati, M., Fischer, C., Palm, G.: Intrinsically motivated decision making for situated, goal-driven agents. In: del Pobil, A.P., Chinellato, E., Martinez-Martin, E., Hallam, J., Cervera, E., Morales, A. (eds.) SAB 2014. LNCS (LNAI), vol. 8575, pp. 166–175. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08864-8_16

    Chapter  Google Scholar 

  10. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  11. Wilson, S.W.: Knowledge growth in an artificial animal. In: Narendra, K.S. (ed.) Adaptive and Learning Systems, pp. 255–264. Springer, Boston (1986). https://doi.org/10.1007/978-1-4757-1895-9_18

    Chapter  Google Scholar 

  12. Wilson, S.W.: The animat path to AI. In: Meyer, J.A., Wilson, S.W. (eds.) From Animals to Animats: Proceedings of the First International Conference on Simulation of Adaptive Behavior, pp. 15–21. MIT Press (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Andersson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andersson, P., Strandman, A., Strannegård, C. (2019). Exploration Strategies for Homeostatic Agents. In: Hammer, P., Agrawal, P., Goertzel, B., Iklé, M. (eds) Artificial General Intelligence. AGI 2019. Lecture Notes in Computer Science(), vol 11654. Springer, Cham. https://doi.org/10.1007/978-3-030-27005-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27005-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27004-9

  • Online ISBN: 978-3-030-27005-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics