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Abstract. This paper presents a novel augmented reality (AR) framework spe-

cifically targeting scene-based exhibits. Unlike traditional AR libraries that rely 

on specific image targets, the proposed framework utilizes a bag-of-words 

model for scene recognition, which enables recognition and subsequent launch 

of AR experiences under challenging environments. Moreover, the proposed 

framework utilizes relocalization capabilities of the popular ORB-SLAM algo-

rithm to track the user’s movement after recognition of a particular exhibit. We 

demonstrate the efficacy of the proposed framework through a complete mobile 

app designed for a local museum, where artifacts are enhanced through AR.  

Keywords: bag-of-words, SLAM, object recognition, scene recognition. 

1 Introduction1 

Augmented Reality (AR) is a live view of a real-world environment whose elements 

are augmented by computer-generated content such as text, sound, video, or anima-

tion. Recently AR has become a ubiquitous mode of application development due to 

the adoption of new technologies, such as mobiles devices, computer vision, 3D ren-

dering, image recognition, and cloud computing. The commercial market for AR ap-

plications is projected to increase from $5.2 billion in 2016 to more than $162 billion 

in 2020 [1]. In an exhibit scenario, such as a museum or a gallery, AR has huge poten-

tial to increase visitor engagement. Instead of reading static text or visuals that typi-

cally accompany such exhibits, an AR solution can present dynamic content in a con-

text aware manner with accurate registration and tracking.  

This work presents a novel framework for accurate scene recognition and tracking 

specifically geared towards creating AR exhibits for museums. The primary contribu-

tions of this work can be summarized as follows: 

1. Perform fast and accurate scene recognition on mobile devices: The initialization 

of a good AR experience for an object on display greatly depends on accurately rec-

ognizing the 3D object so that virtual content can be retrieved and aligned with the 

real-world view through the device’s camera. Unlike traditional image target-based 

approaches for initialization that is prevalent in commercial SDKs such as Vuforia 

[2], ARCore [3], ARKit [4], we utilize a 2D to 3D matching algorithm that is tradi-

                                                           
1  NSERC’s financial support for this research work through a Collaborative Research and 

Development (CRD) Grant (#507333-16) is much appreciated. 



2 

tionally used for scene recognition. We show that for challenging AR initialization 

scenarios, the scene recognition algorithm succeeds while image-based targets fail.   

2. Perform robust real-time tracking on mobile devices: For a smooth AR experience, 

real-time tracking is essential once the AR content is retrieved and initially aligned. A 

state-of-the-art Simultaneous Localization and Mapping (SLAM) algorithm [5] is 

utilized to work with the recognition module in delivering a seamless AR experience. 

To further speed up tracking, the mobile devices’ Inertial Measurement Units (IMUs) 

are utilized to interpolate orientation between SLAM-based tracking calls.  

Using the algorithms, a prototype application was developed for the newly reno-

vated Canada Science and Technology Museum (CSTM), where various museum 

artifacts were recognized, and highly immersive educational experiences were initiat-

ed based on recognition and tracked in real-time using SLAM. 

2 Related Work 

The usage of AR in exhibits has recently attracted some attention. [6] promoted 

MRsionCase, a device-free mixed reality (MR) showcase that presents spatially con-

sistent visual and auditory information with physical exhibits. However, the proposed 

system displays only 2D images at a fixed position, which lacks depth perception and 

interactivity. [7] built a museum display in the Mawangdui Han Dynasty Tombs and 

overlaid virtual archaeological relics onto real exhibits. The Vuforia SDK [2] was 

used to perform object recognition and camera motion tracking.  Although the AR 

experience did not require external infrastructure, it needed a calibration grid in the 

mapping stage that must be approximately the same size as the object being mapped.  

This process becomes cumbersome with large artifacts.  [8] developed a museum tour 

guide application which gives users access guiding services and other functions inter-

actively. The proposed navigator relies on pre-installed sensor beacons for localiza-

tion. [9] is our own previous work, where we developed a large-area augmented reali-

ty exhibit for the Fort York National Historic Site, where multiple users can experi-

ence the same shared events simultaneously. We utilized specialized hardware that 

performed radio-frequency-based tracking. The work presented here demonstrates 

that a similar experience can be achieved using only a mobile device’s camera. 

3 Background 

A key challenge in an AR-based exhibit design is localizing the user with respect to 

the world. Typically, image-based targets are used in commercial libraries such as 

Vuforia [2], ARCore [3], ARKit [4], where a 2D image is utilized at the recognition 

stage to localize the user. However, in challenging scenarios such as low light, dis-

tance from 2D image, such recognition fails, as we see in the experimental results 

section. Another alternative is to entirely depend on relocalization with SLAM. How-

ever, as we show, the relocalization approach is prone to drift due to accumulated 

errors and it is difficult to achieve real-time performance with acceptable accuracy on 

mobile devices. Although ARCore/ARKit has good native implementation of SLAM, 



3 

none of the libraries have consistent relocalization, and the libraries only support 

newer devices. Instead, we approach the problem in two stages: 1) 3D scene recogni-

tion; where we utilize a bag-of-word models to recognize the current exhibit instead 

of the traditional 2D image approach for robust recognition; and 2) camera motion 

tracking; where we enable relocalization within SLAM to track the user’s movement.  

 

Decoupling the recognition from tracking ensures consistent launch of AR experienc-

es followed by tracking. Any potential drifts/slowdown arising from SLAM does not 

affect the initialization of the experience. The bag-of-words model provides instanta-

neous and robust recognition, which enhances user experience.  

 

 

3.1 Scene Recognition 

 [10] surveyed methods for scene recognition and argued that appearance-based im-

age-to-image matching techniques perform better than map-to-map and image-to-map 

methods. Within appearance-based methods, the bag of words methods (BoW) have 

the highest performance. [11] proposed the bag of binary words obtained from BRIEF 

descriptors along with the very efficient FAST feature detector, reducing the time 

needed for feature extraction by more than one order of magnitude. However, BRIEF 

is not invariant to rotation nor scale, which limited the system to in-plane trajectories 

and loop closures with similar point of view. [12] extend that work using ORB, which 

are rotation invariant and can deal with changes in scale. The bag of binary words 

method DBoW2 [11] is used for image to image matching mainly for the purpose of 

scene recognition inside SLAM algorithms [12]. Scene recognition within SLAM 

algorithms are used for relocalization and loop closing. Relocalization uses image to 

image matching to allow for SLAM algorithms to recover from tracking failure which 

would render previously mapped data useless in visual odometry algorithms. Loop 

closing reduces the odometry drift error by detecting paths to revisited areas and then 

minimizes the error over the path. This work will apply DBoW2 to recognize the 

artifact being viewed by the camera and trigger its AR experience. 

3.2 Camera Motion Tracking 

From an AR context, tracking based on visual features mostly use some variant of 

Simultaneous Localization and Mapping (SLAM).  The objective of SLAM in an AR 

context is to anchor the virtual objects to their position in the real world, regardless of 

the motion of the user. To accomplish this, the system must be able to track the cam-

era pose (i.e., 3D position and orientation) relative to the anchor point. The chosen 

SLAM system for this work is ORB-SLAM [5], which runs three parallel threads: 

tracking, mapping, and loop closing. ORB-SLAM uses ORB features in their localiza-

tion, tracking, mapping, and loop closing. The ORB feature allows the algorithm to 

have real-time performance without relying on GPUs and provided some robustness 

to lighting changes and invariance to rotation and scaling. All the functions using the 

same descriptor also allows ORB-SLAM to be efficient in both memory and execu-

tion time by preventing the need to compare different descriptors. ORB-SLAM uses 

DBoW2 when performing relocalization and loop closure detection. These functions 
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allow ORB-SLAM to have more re-usability and more robustness while maintaining 

its real-time performance.  

The tracking thread maintains camera localization and determines when a new 

keyframe should be added. The local mapping thread oversees the mapping of the 

keyframes. The loop closing thread then takes the new keyframe and map points to 

calculate a similarity score to its closest matches using DBoW2. If the frames pass a 

threshold then the thread will attempt to minimize the mean square error of the entire 

loop rather than minimize local error. 

4 Methodology 

This section explains how the scene recognition module and the tracking module are 

integrated to deliver a novel AR experience for museums.  Four modules were devel-

oped (Fig. 1): An offline module to perform training for scene recognition; an offline 

module to generate and save a map for each artifact; an online module to perform 

scene recognition; and an online module to perform motion tracking. 

ORB-SLAM was selected to perform camera motion tracking in Modules 2 and 4, as 

it has been shown to perform well on mobile devices [13].  DBoW2 was selected to 

perform object recognition in Modules 1 and 3 because it has also been shown to 

performance well on mobile devices [14].  Further, DBoW2 is used for ORB-SLAM’s 

relocalization and loop closing, which facilitated the integration of the modules.  The 

software libraries were built for Android and integrated as Unity 3D game engine 

plugins.  Rendering the AR content was also performed by Unity 3D. 

 

 

 

Fig. 1. The two phases performed by the museum staff and the user respectively 

4.1 Module 1: Training for scene recognition 

Training for scene recognition is an offline process performed by the museum staff, 

which involves capturing images of each artifact from various vantage points.  These 

vantage points are predictions of how the user will view the artifact with their mobile 

device.  Images were captured using various image resolutions and aspect ratios, and 
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from various heights, viewing angles, and distances from the artifact.  These images 

were processed using DBoW2.  10 to 20 images were captured per artifact, as this 

number produced a sufficiently small database size, while maintaining high precision 

and recall rates for object recognition.  A verification step was developed to further 

increase the precision and recall of DBoW2.  Specifically, DBoW2 returns the object 

and image with the highest match score.  An object was accepted if it was returned 7 

times among 10 consecutive images, as this ratio provided an acceptable balance be-

tween reliability and real-time performance. 

The visual vocabulary was created by [12] in an offline step with the dataset Bovisa 

2008-09-01 [15]. This dataset is a sequence with outdoors and indoors areas, yielding 

a vocabulary that provides good results in both scenarios. ORB features were extract-

ed from ten thousand images from the dataset and a vocabulary of 6 levels and 10 

clusters per level was built, getting one million words. Such a big vocabulary is sug-

gested in [11] to be efficient for recognition in large image databases.  

The vocabulary had a file size of 43 MB.  The training database generated by DBoW2 

had a file size of 14 MB.  Both files are stored onboard the mobile device when the 

application is installed.  On a Google Pixel, the average load time for the files were 

4.2±0.4 seconds and 5.4±0.2 seconds, respectively. 

 

4.2 Module 2: Object mapping for camera localization 

Object mapping is an offline phase performed by the museum staff.  The purpose of 

this module is to generate and save a map that will be used for online localization.  

The map generated by ORB-SLAM is a pose graph connecting 3D map points and 

keyframes.  Where a 3D map point consists of a 3D world position and an ORB de-

scriptor, and a keyframe consists of an image’s camera pose and ORB feature points 

in the image, each with its associated 3D map point. The mapping process involved 

capturing images of each artifact from various vantage points.  As in the object recog-

nition training phase, these vantage points were predictions of where the user will 

view the artifact.  Thus, the map contained keyframes captured from various heights, 

viewing angles, and distances from the artifact, Tracking must be maintained 

throughout the mapping process, thus the images were processed in real-time using 

ORB-SLAM, as opposed to collecting images or video and post-processing the 

frames.  The generated maps are stored onboard the mobile device upon installation of 

the application, thus the file size of each artifact’s map was limited to a maximum of 

10 megabytes.  On a Google Pixel, a map with this file size had an average load time 

of 1.83±0.58 seconds and average processing time for the localization module of 

1.85±0.69 second (Table 1).   

4.3 Object Positioner Tool 

The object positioner tool (Fig. 2) is used by the museum staff to calibrate the AR 

content’s pose with respect to its corresponding map.  The tool provides a menu but-

ton that allows the staff to load the artifact’s AR content and map.  The staff is then 

able to select the increment value, the type of transformation (i.e., translate, rotate, or 

scale), the coordinate system axis, and the direction of adjustment (i.e., positive or 

negative direction). The calibrated offsets for each artifact are saved.  When the appli-

cation is installed by the museum visitor, these offsets are stored locally on the device. 
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Fig. 2. A) Misalignment between the real TV screen and the AR content (TV screen). 

B) The Positioner Tool has been used to align the AR content with the real TV screen.  

The AR content’s pose with respect to the map (green cubes) is stored. 

4.4 Module 3: Scene recognition 

Scene recognition is an online phase performed by the museum visitor.  The user 

points the mobile device’s camera at an object and DBoW2 recognizes the object, the 

corresponding map and AR content is then retrieved from the database, and the cam-

era localization module is started.  This module requires the vocabulary and the train-

ing database files.  As previously mentioned, both files are stored locally on the mo-

bile device when the application is installed. 

4.5 Module 4: Camera localization 

Camera localization is an online phase performed by the museum visitor.  The user 

points the mobile device’s camera at an object. Once Module 3 recognizes the object 

and retrieves the object’s map from the database, this module estimates the camera 

pose with respect to the object (i.e., map of the object).  This process allows the AR 

content to be displayed in the correct pose on the screen of the user’s mobile device.  

ORB-SLAM is used in Localization Mode, a lightweight localization algorithm used 

in mapped areas. In this mode the local mapping and loop closing threads are deac-

tivated and the camera continuously localizes using the tracking thread. 

5 Experiments 

The AR application was built for the Android operating system. Fig. 3 shows the 

Cheerful Oak Stove artifact (circa 1920).  When the user views the artifact using the 

mobile device’s camera, the object recognition module automatically retrieves the 

corresponding AR content and map from the database.  The AR content allows the 

user to virtually interact with the artifact by dragging logs of wood into the stove via 

the mobile device’s touch screen. The user then places a lit match in the stove to set 

the wood on fire.  The tracking module applies the camera localization on every 

frame; this allows the AR content to maintain alignment with the artifact as the user 

moves the camera to view the artifact from different perspectives. 
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Fig. 3. Stove artifact with AR content. 

 
Fig. 4. A) Gas pump, B) TV, C) Snow blower. 

 

Fig. 4 shows three other artifacts: A) A Shell twin visible gasoline pump (circa 1925), 

B) A Philco Predicta television (TV) (circa 1959), and C) an Outboard Marine Corpo-

ration snow blower (circa 1963).  In the AR experience for the gas pump, the glass 

cylinders fill with fuel.  A 1925 Chevrolet drives into camera’s field of view.  The AR 

experience for the television is automatically triggered by the object recognition mod-

ule when the user points the mobile device’s camera at the television artifact.  The AR 

experience includes an animated television screen showing a black and white video.   

There were 8 AR experiences in total.  Table 1 shows results from 10 trials at each 

experience.  Where each trial involved the user opening the application, going through 

the AR experience, then closing the application. The results include the average time 

taken for DBoW2 to recognize the object, properties of the ORB-SLAM map, the 

average time taken for ORB-SLAM to localize with respect to the map, and the aver-

age reprojection error upon relocalization.  The reprojection error is the image dis-

tance between a projected point belonging to the 3D AR content and its corresponding 

2D point in the image.  5 check points, evenly spread throughout the object, were 

measured to calculate each scene’s reprojection error with 640x480 pixels.   
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5.1 Evaluation of Scene Recognition 

DBoW2 performed uniformly across all experiences, with 100% precision and recall, 

and approximately equal recognition times. As we can see from Table 1, the average 

recognition time of 0.47 seconds is well within the realm of real-time performance for 

launch of an AR scene. We also attempted at traditional image target-based recogni-

tion with Vuforia [2], however, for almost all the artifacts, the image targets were not 

recognized even with slight changes in lighting or viewing angle. This demonstrates 

that for a practical AR application, scene recognition holds more potential for a dis-

traction-free user experience.  

5.2 Evaluation of Relocalization and Camera Motion Tracking:    

Larger artifacts (e.g., the TV, the gas pump, and the Union Station lamp) required 

larger areas to be mapped, resulting in larger map file sizes and map load times.  The 

experiments revealed several effects as map size increased:  error in the map in-

creased, the map points were sparser, and less ORB features were extracted from 

smoother images, resulting in longer localization times and larger reprojection errors 

(Table 1). The results also indicate that the localization time is too long for real-time 

AR applications.  Thus, instead of invoking relocalization at every frame, it is called 

once to initialize the camera pose in the map’s coordinate system, the device’s IMU-

based rotational tracker is then used to update the camera orientation. The IMU pro-

vides an orientation estimate every frame (20 Hz), however the pose drifts over time 

and the rotational tracker does not estimate changes in the device’s position.  ORB-

SLAM’s relocalization is called in a separate thread at 0.5 Hz, based on the results in 

Table 1, to provide a periodic drift correction. 

Table 1. Results from 10 trials at each experience.  The results include the average 

time taken to recognize the object, properties of the ORB-SLAM, the average time 

taken to localize the camera, and the average reprojection error upon relocalization. 

Scene 

Recognition 

time (s) 

# key 

frames 

# map 

points 

File 

size 

(Mb) 

Map load 

time (s) 

Localization 

time (s) 

Reprojection 

error  

(pixels) 

Ray gun 0.61 ± 0.26 62 939 2.9 1.58 ± 0.52 1.83 ± 0.48 23.76 ± 13.12 

Ship 0.42 ± 0.66 61 849 3.5 1.25 ± 0.48 1.55 ± 0.37 17.81 ± 10.63 

Microphone 0.60 ± 0.13 64 778 2.9 1.45 ± 0.37 1.91 ± 0.81 45.88 ± 24.47 

Snow 

blower 

0.54 ± 0.30 62 982 4.7 1.82 ± 0.72 1.47 ± 0.39 36.05 ± 11.95 

Stove 0.46 ± 0.25 60 884 3.2 1.28 ± 0.58 2.12 ± 0.22 30.87 ± 20.54 

Gas Pump 0.35 ± 0.63 96 1095 4.1 1.91 ± 0.71 2.70 ± 0.56 52.38 ± 23.27 

TV 0.23 ± 0.12 96 1338 6.5 2.54  ± 0.97 2.1 ± 0.41 69.42 ± 15.81 

Lamp 0.58 ± 0.23 124 1673 8.8 2.83 ± 0.25 2.49 ± 0.31 75.23 ± 24.91 

Mean 0.47  

± 0.32 

89.75  

± 

35.16 

1067.25  

± 

299.91 

 4.56  

± 

2.09 

1.83 

± 0.58 

1.85 

± 0.69 

41.43  

± 16.84 



9 

6 Conclusion 

In this work, we proposed an AR framework that intelligently combines 3D scene 

recognition with the relocalization capabilities of SLAM to provide a smooth user 

experience, where AR scenes are instantly launched through scene recognition, and 

user’s movement is tracked through SLAM-based motion tracking. We demonstrate 

that utilizing scene recognition results in successful AR experience design in a chal-

lenging museum environment with low light and multiple viewing angles, where tra-

ditional image target-based recognition fails. We provide detailed performance analy-

sis of the framework with an Android application, where timings, file sizes, and error 

metrics for each module of the framework is presented and analyzed.  

Future work involves developing a cloud processing module to offload recognition 

and tracking computations to a server to improve performance and provide a tool for 

central managing and distribution of maps for easy application administration.  
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