Skip to main content

Unsupervised Deep Shape from Template

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11662))

Included in the following conference series:

  • 1159 Accesses

Abstract

This paper presents Unsupervised Deep Shape from Template (UDSfT), a novel method that leverages deep neural networks (DNNs) for reconstructing the 3D surface of an object using a single image. More specifically, the reconstruction of isometric deformable objects is achieved in the proposed UDSfT method via a DNN-based template-based framework. Unlike previous approaches that leverage supervised learning, the proposed UDSfT method leverages the notion of unsupervised learning to overcome this obstacle and provide real-time 3D reconstruction. More specifically, UDSfT achieves this via an unsupervised structure that leverages a combination of real-data and synthetic data. Experimental results show that the proposed UDSfT method outperforms the state-of-the-art Shape from Template methods in object 3D reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bagheri, M., Famouri, M., Azimifar, Z., Nazemi, A.: Deep learning-based corresponding points fast matching. In: International Conference on Pattern Recognition and Artificial Intelligence, pp. 256–260 (2018)

    Google Scholar 

  2. Banerjee, D., Yu, K., Aggarwal, G.: Robotic arm based 3D reconstruction test automation. IEEE Access 6, 7206–7213 (2018)

    Article  Google Scholar 

  3. Bartoli, A., Gérard, Y., Chadebecq, F., Collins, T., Pizarro, D.: Shape-from-template. IEEE Trans. Pattern Anal. Mach. Intell. 37(10), 2099–2118 (2015)

    Article  Google Scholar 

  4. Chhatkuli, A., Pizarro, D., Collins, T., Bartoli, A.: Inextensible non-rigid structure-from-motion by second-order cone programming. IEEE Trans. Pattern Anal. Mach. Intell. 40(10), 2428–2441 (2018)

    Article  Google Scholar 

  5. Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2650–2658 (2015)

    Google Scholar 

  6. Famouri, M., Bartoli, A., Azimifar, Z.: Fast shape-from-template using local features. Machi. Vis. Appl. 29(1), 73–93 (2018)

    Article  Google Scholar 

  7. Golyanik, V., Shimada, S., Varanasi, K., Stricker, D.: HDM-net: monocular non-rigid 3D reconstruction with learned deformation model. In: Bourdot, P., Cobb, S., Interrante, V., Kato, H., Stricker, D. (eds.) EuroVR 2018. LNCS, vol. 11162, pp. 51–72. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01790-3_4

    Chapter  Google Scholar 

  8. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  9. Kang, K., et al.: T-CNN: tubelets with convolutional neural networks for object detection from videos. IEEE Trans. Circ. Syst. Video Technol. 28(10), 2896–2907 (2018)

    Article  Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  11. Liu, J., et al.: 3D feature constrained reconstruction for low-dose CT imaging. IEEE Trans. Circ. Syst. Video Technol. 28(5), 1232–1247 (2018)

    Article  Google Scholar 

  12. Ngo, D.T., Östlund, J., Fua, P.: Template-based monocular 3D shape recovery using laplacian meshes. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 172–187 (2016)

    Article  Google Scholar 

  13. Östlund, J., Varol, A., Ngo, D.T., Fua, P.: Laplacian meshes for monocular 3D shape recovery. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 412–425. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_30

    Chapter  Google Scholar 

  14. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer Science & Business Media (2010)

    Google Scholar 

  15. Varol, A., Shaji, A., Salzmann, M., Fua, P.: Monocular 3D reconstruction of locally textured surfaces. IEEE Trans. Patt. Anal. Mach. Intell. 34(6), 1118–1130 (2012)

    Article  Google Scholar 

  16. Zhang, C., et al.: A hybrid MLP-CNN classifier for very fine resolution remotely sensedimage classification. ISPRS J. Photogramm. Remote Sens. 140, 133–144 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zohreh Azimifar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Orumi, M.A.B., Sepanj, M.H., Famouri, M., Azimifar, Z., Wong, A. (2019). Unsupervised Deep Shape from Template. In: Karray, F., Campilho, A., Yu, A. (eds) Image Analysis and Recognition. ICIAR 2019. Lecture Notes in Computer Science(), vol 11662. Springer, Cham. https://doi.org/10.1007/978-3-030-27202-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27202-9_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27201-2

  • Online ISBN: 978-3-030-27202-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics