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Abstract—While microscopic analysis of histopatholog-
ical slides is generally considered as the gold standard
method for performing cancer diagnosis and grading, the
current method for analysis is extremely time consuming
and labour intensive as it requires pathologists to visu-
ally inspect tissue samples in a detailed fashion for the
presence of cancer. As such, there has been significant
recent interest in computer aided diagnosis systems for
analysing histopathological slides for cancer grading to
aid pathologists to perform cancer diagnosis and grading
in a more efficient, accurate, and consistent manner. In
this work, we investigate and explore a deep triple-stream
residual network (TriResNet) architecture for the purpose
of tile-level histopathology grading, which is the critical
first step to computer-aided whole-slide histopathology
grading. In particular, the design mentality behind the
proposed TriResNet network architecture is to facilitate for
the learning of a more diverse set of quantitative features
to better characterize the complex tissue characteristics
found in histopathology samples. Experimental results
on two widely-used computer-aided histopathology bench-
mark datasets (CAMELYON16 dataset and Invasive Duc-
tal Carcinoma (IDC) dataset) demonstrated that the pro-
posed TriResNet network architecture was able to achieve
noticeably improved accuracies when compared with two
other state-of-the-art deep convolutional neural network
architectures. Based on these promising results, the hope
is that the proposed TriResNet network architecture could
become a useful tool to aiding pathologists increase the
consistency, speed, and accuracy of the histopathology
grading process.

I. INTRODUCTION

The microscopic analysis of hematoxylin and eosin
(H&E) stained histopathological slides is generally con-
sidered as the gold standard method for diagnosing and
grading cancers [18][10]. However, the current method
for performing such an analysis requires the manual vi-
sual inspection of human pathologists, and as such can be
limiting in several aspects. First of all, histopathological

Fig. 1. An overview of the deep learning-driven computer-aided
whole slide image (WSI) histopathology grading pipeline. In the first
stage, tiles from the WSI are extracted and tile-level histopathology
grading is performed using a deep convolutional neural network
(CNN). In the second stage, the histopathology gradings for all
tiles in the WSI are combined to create a malignancy probability
heatmap. Features are then extracted from this heatmap, and are
used to generate a final WSI-level grading. In this paper, we focus
on improving tile-level histopathology grading using the proposed
TriResNet network architecture.

diagnosis and grading via manual visual inspection relies
on the qualitative analysis of images from a microscope
by a human pathologist, and as such can suffer from
high inter-observer and intra-observer variability, partic-
ularly with the lack of standardization in the diagnosis
and grading process. Second, the visual inspection of
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histopathological slides is an extremely time-consuming
and labor intensive process, especially considering the
large volume of slides that a typical pathologist must
analyze, with each slide containing millions of cells [2],
[27], [9]. These issues associated with the current method
for performing histopathological diagnosis and grading
are problematic in developed countries, but are far
greater in developing countries where there is a severe
lack of trained pathologists[5]. As such, there has been
significant recent interest in computer aided diagnosis
systems for analysing histopathological slides for cancer
grading to aid pathologists to perform cancer diagnosis
and grading in a more efficient, accurate, and consistent
manner.

Amongst the different strategies proposed for the
purpose of computer aided histopathology grading, one
of the most promising recent developments has been the
leveraging of machine learning for building computa-
tional predictive models learnt directly from the wealth
of histopathological slides. Earlier methods that lever-
aged machine learning for computer aided histopathol-
ogy grading utilized human-engineered quantitative fea-
tures extracted from a histopathological image, followed
by the application of a machine learning-driven clas-
sification model on these extracted features [23], [13],
[3], [26], [8], [4]. For example, [26] utilized tissue
texture features by performing cell segmentation and
calculating nuclei density and position as extracted fea-
tures to be fed into a quadratic classifier. Other ap-
proaches have utilized a heterogeneous mix of human-
engineered features ranging from simple features such as
hue, saturation, and intensity to more complex features
such as texture-based features (e.g., Haralick features
and Gabor features) as well as graph-based features,
followed by the application of support vector machines
on these extracted features [8]. However, such earlier
methods that leverage human-engineered features have
been limited in their performance due to the significant
difficulties for human experts to manually design a
comprehensive set of features that can comprehensively
capture the complex tissue characteristics exhibited in
histopathological slides. Therefore, methods that can
learn a comprehensive set of important quantitative fea-
tures for discriminating between benign and cancerous
tissue directly from histopathological slides themselves
is highly desired.

In recent years, the concept of deep learning [19] has
revolutionized the area of computer-aided histopathology
diagnosis and grading by automatically learning discrim-
inative quantitative features from the wealth of avail-
able histopathological images in a direct manner, rather
than being constrained by the limitations of human-

engineered features. In particular, a type of deep neural
network known as deep convolutional neural networks
(CNN), which demonstrated state-of-the-art performance
on visual perception compared to other machine learn-
ing algorithms [17], has been leveraged for computer-
aided histopathology grading to great success [31], [28],
[22], [21], [20]. These deep learning-driven computer-
aided whole slide image (WSI) histopathology grading
approaches tend to share the same general pipeline.
More specifically, the vast size of whole slide image
make them computational intractable to be processed
by a deep convolutional neural network in a single
inference pass, as is commonly performed in general
image classification where the images are significantly
smaller in size.

To handle this size and complexity issue, these ap-
proaches breaks the task of WSI histopathology grading
into two main stages (an overview of this two-stage
approach is illustrated in Fig. 1). In the first stage, tissue
image tiles are extracted from the WSI after preprocess-
ing is used to reduce the irrelevant white space in the
slide. A CNN trained to perform tile-level tissue grading
is then used to grade each of the individual tiles extracted
over the entire WSI. In the second stage, the histopathol-
ogy gradings for all tiles in the WSI are then combined
together to create a malignancy probability heatmap, and
from this heatmap a number of WSI-level geometrical
and morphological features are then extracted. These
extracted WSI-level features are then used by a machine
learning classification model to generate the final WSI-
level histopathology grading. As such, improvements to
either of these two stages would yield benefits for the
overall WSI histopathology grading processing. In this
paper, we place our focus on improving the first stage of
the computer-aided WSI histopathology grading pipeline
by improving the performance of the tile-level tissue
grading process through the introduction of an improved
CNN network architecture.

The key contribution of this paper is the introduction
of a novel deep triple-stream residual network (TriRes-
Net) architecture for the purpose of improved tile-level
histopathology grading. The proposed TriResNet archi-
tecture incorporates three different streams comprised
of a deep stack of residual blocks, with the underlying
motivation that, through careful training, each residual
stream will learn a different set of quantitative features
for better characterizing different aspects of the complex
tissue characteristics captured in histopathology images
than what can be achieved by a single-stream network. A
multi-stage targeted training procedure is also introduced
to overcome the difficulty of training such a large net-
work architecture as well as better encouraging feature
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diversity within the network.
This paper is organized as follows. Section 2 provides

a detailed description of the proposed TriResNet network
architecture [2.2], as well as the multi-stage targeted
training policy leveraged to train the network [2.3].
Section 3 presents the experiments conducted on two
publicly available histopathology benchmark datasets
(CAMELYON16 dataset and Invasive Ductal Carcinoma
(ICD) dataset), including a description of datasets [3.1]
as well as the experimental setup [3.2]. Finally, experi-
mental results and discussion of the results are presented
in Section 4, with conclusions drawn and future work
discussed in Section 5.

II. DEEP TRIPLE-STREAM RESIDUAL NETWORK

The proposed deep triple-stream residual network
(TriResNet) architecture is designed based on the idea
of extracting a more diverse set of discriminative quan-
titative features for better characterizing the diverse and
complex tissue characteristics exhibited in histopatholog-
ical images. A more detailed description of the proposed
network architecture as well as the multi-stage targeted
training policy used to train this network is provided
below.

A. Network Architecture

The underlying goal behind the design of the pro-
posed TriResNet network architecture is to better learn
a larger, more diverse set of quantitative features for
characterizing complex and varied tissue characteristics
exhibited in histopathology images. To achieve this goal,
we leverage the notion of residual learning first proposed
in [12], which has not only demonstrated state-of-the-art
performance for a wide variety of applications such as
general image recognition [12], but has been recognized
in research literature for its terrific ability to perform
well both for feature extraction and fine-tuning[16].

The strategy we leverage in the proposed TriResNet
network to encourage greater feature diversity is to
incorporate multiple streams of residual blocks, with the
underlying premise being that each of these independent
streams, when trained appropriately, will be able to
capture different nuances within the tissue characteristics
in histopathology images. More specifically, as shown in
Fig. 2, the proposed TriResNet architecture comprises of
three separate residual streams consisting of deep stacks
of residual blocks for a total of 34 layers in each stream,
with each stream made up of a different set of learned
weights to capture diverse feature sets. To explicitly
encourage feature diversity of individual residual streams
and learn to capture different tissue nuances amongst

Fig. 2. Deep triple-stream residual network (TriResNet) architecture.
An input layer feeds three separate residual streams, which each
residual stream composed of a deep stack of residual blocks with a
total of 34 layers. Each of these residual streams extract different
sets of quantitative features, which are then fed into a concatenation
layer, followed by two fully connected layers that result in a final
grading prediction of the input histopathological image tile as being
either malignant or benign tissue.

the streams, each residual stream undergoes pre-training
exposure to different data collections, which will be
described in detail in Section [2.3] where the multi-stage
targeted training policy is outlined.

The features of the last residual blocks in each of
the three residual streams within the proposed TriRes-
Net architecture are combined in a concatenation layer,
which is then fed into a 16-neuron fully connected layer,
followed by a ReLU layer, which then feeds into a final
fully connected layer where the number of neurons is
equal to the number tissue grades to provide the final
prediction output.

B. Multi-stage Targeted Training Policy

One of the challenges with leveraging the proposed
TriResNet architecture for tile-level histopathology grad-
ing is that training such a complex network is extremely
difficult because of the large number of parameters



4

within this network (which makes converging to an
appropriate solution quite challenging given this large
parameter size) as well as the dangers of over-fitting. In
order to tackle the aforementioned problem, we leverage
a multi-stage targeted training policy consisting of the
following three main stages:

1) Targeted pre-training of individual residual
streams.

2) Targeted training of fully connected network lay-
ers.

3) End-to-end fine-tuning of the full network.

Targeted pre-training of individual residual streams.
As the first stage of the training policy, each of the
three residual streams are pre-trained independently
by freezing the weights of the other residual streams,
and augmenting a proxy fully connected output layer
to the particular residual stream we wish to pre-train.
This ensures that only one particular residual stream
will be pre-trained at a time, leaving the other residual
streams unaffected during the individual pre-training
processes. Given our goal is to encourage diverse
feature learning to better model the diverse tissue
characteristics in histopathology, we utilize a stochastic
pre-training policy for each of the residual streams via
their individual proxy fully connected output layers
such that the individual streams are exposed to different
random batches of tissue tiles during the pre-training
process. This ensures that each residual stream will
converge to a different set of weights, and thus will
be capable of capturing a diverse set of quantitative
features compared to the other residual streams during
inference. To speed up the pre-training process, each
residual stream was initialized with pre-trained weights
based on the ImageNet Challenge Dataset [7]. This
pre-training process is repeated for each of the residual
streams, and the proxy layers are removed at the end of
the pre-training processes.

Targeted training of fully connected network layers.
After the targeted training of individual residual
streams, we now focus on the targeted training of the
fully connected network layers. The rationale behind this
is that, because the random initialization of these layers,
there is strong potential for convergence issues if the
entire network architecture is trained end-to-end at this
point. By freezing the weights of the individual residual
streams while the fully connected layers begin to
learn, we allow the fully connected layers to converge
to a good set of weights without the convergence
issues associated with training the entire network at

this point. Furthermore, because backpropagation is
performed only on the fully connected layers, the time
to convergence is greatly accelerated.

End-to-end fine-tuning of the full network. After
the fully-connected layers in the network have been
trained using the targeted training process, the entire
network undergoes an end-to-end fine-tuning process
to further improve the performance of the full network
architecture. In this part of the training process, we
backpropogate the gradient though the entire network,
including each of the three residual streams and the
fully connected layers as a whole, thus optimizing the
weights of the entire network. This is done at a lower
learning rate that is a factor of 10 times lower than the
initial learning rate. This end-to-end fine-tuning phase
also encourages the individual residual streams to work
cohesively together as a complete network architecture.

III. EXPERIMENTS

To study the efficacy of the proposed TriResNet net-
work for the purpose of tile-level histopathology grading,
we performed a series of experiments using two widely-
used histopathological image benchmark datasets. The
details of these datasets as well as the experimental setup
are presented below.

A. Data

We investigate two publicly-available histopatholog-
ical image benchmark datasets: i) CAMELYON16[1]
dataset, and ii) Invasive Ductal Carcinoma (IDC) [14],
[6] dataset.

1) CAMELYON16 Dataset: The CAMELYON16
dataset contains lymph node tissues of breast cancer
patients, with the goal being to find metastasis of breast
cancer. CAMELYON16 consists of 400 whole slide im-
ages (WSI) divided into 270 for training and 160 for test-
ing. Ground truth is provided by a mask corresponding to
each slide, which is an image with pixel level annotation
indicating the cancerous regions. Both the mask and the
WSI are very high resolution (100,000 x 200,000 pixels),
with a single file being about 5 gigabytes. These are
stored in a multi-resolution format, meaning that each
file contains the high resolution image, as well as down
sampled versions to a minimum size of about 512x1024.
An example WSI from the CAMELYON16 dataset is
shown in Fig. 3.

Due to the large size of the high resolution WSI
slides making it difficult to handle and even perform
simple operations on the slides in a direct manner,
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Fig. 3. An example of a whole slide image from the CAMELYON16
dataset, showing the large amount of irrelevant background in white.

OpenSlide[11] is used to read in subsections of the WSI
at a lower resolution.

2) Preprocessing: Because of the large size of the
WSIs, the background is segmented from the actual
tissue to greatly reduce the computational requirements
in dealing with the histopathological images. This is
accomplished in this paper using the preprocessing ap-
proach described in [31]:

1) Read in WSI at resolution about 3072x7168 pixels,
and convert from RGB to HSV.

2) Use Otsu’s algorithm [24] to separate the back-
ground from foreground, then take the union of
the result with the H and S channels to generate a
tissue mask.

3) Dataset Generation: In many circumstances, 270
images would be considered too few data points to
train a CNN. However, due to the fact that we have
pixel-level annotations and very high resolution images,
a much larger training dataset can be generated from
subsections of the original WSI slides and the labels from
the pixel-level annotations, using a similar approach as in
previous research literature [30], [31]. More specifically,
we create a dataset of 224x224 sized tissue image tiles
at the highest magnification available, as past research
literature has shown that it is most useful to look at the
WSIs at the highest magnification [31], [22]. Example
tissue image tiles obtained from the CAMELYON16
dataset are shown in Fig. 4.

4) Class Imbalance: Given that the WSIs contain far
more benign than malignant tissue, this can lead to a
significant data imbalance problem when training CNNs.

Fig. 4. Examples of tissue image tiles from the CAMELYON16
dataset showing benign and malignant tissues. These tissue image
tiles are extracted at the highest magnification (40x), with a size of
224x224 pixels.

Therefore, we oversample the malignant class to create a
balanced dataset of half malignant and half benign tiles.

To generate the dataset, we alternate sampling between
malignant and benign tissue. In the case of malignant
tissue, we select a malignant slide and sample from the
region indicated by the malignancy mask. In the case
of benign tissue, because malignant slides also contain
benign tissue, we select any slide, and make sure that
the area we sample in is inside the tissue mask and but
not in the malignancy mask.

In both cases the malignancy mask is down-sampled
to be the same magnification as the tissue mask, and
sampling is done at this magnification. These points are
then converted to the highest magnification, and we read
in the tile at this level. No color normalization is used
because it proved to be ineffective in other research [22].

5) Invasive Ductal Carcinoma (IDC) Dataset: The
Invasive Ductal Carcinoma (IDC) dataset [14], [6] is
generated from 162 whole slide images of breast can-
cer, scanned at 40x magnification. From these slides,
198,738 images were sampled of size 50x50 pixels, with
78,786 of these images containing IDC. Because of the
small size of these images, they were resized to the
minimum acceptable size for the network during training
(197x197), as is done in previous literature. The dataset
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Fig. 5. Examples of tissue image tiles from the Invasive Ductal
Carcinoma (IDC) dataset showing benign and malignant tissues.
These tissue image tiles are extracted at 40x magnification, with a
size of 50x50 pixels.

is already in the format of a standard image classification
dataset, so no special preprocessing is needed. Example
tissue image tiles from the IDC dataset are shown in
figure 5.

B. Experimental Setup

In this paper, we compare the proposed TriResNet
network to two state-of-the-art deep convolutional
neural networks in order to gauge its performance for
the purpose of tile-level histopathology grading. Details
of these experiments are shown below.

Test-Train-Validation Split
The CAMELYON16 dataset was split between by WSI
into 80% for training and 20% for validation, and
the independent test set given by the CAMELYON16
competition was used for testing and evaluation. For
each of the WSIs we extracted malignant and benign
tiles, balancing the number of benign and malignant
samples, as described above. For the IDC dataset, a
split of 70% training, 15% for validation, and 15% for
test set was used.

Tested Deep Convolutional Neural Networks
To evaluate and compare the performance of the

proposed TriResNet, we compare it to two state-
of-the-art deep convolutional neural networks: i)
Inception-v3 [29], and ii) ResNet-34 [12]. We optimized
the performance for the two tested networks to the
best of our abilities for high histopathology grading
performance on the two datasets.

• Inception-v3: This state-of-the-art network
architecture was shown to achieve state-of-
the-art performance on the CAMELYON16
histopathology competition [22]. Because of this
network’s demonstrated impressive performance
in computer-aided histopathology diagnosis, this
network is a good choice for comparing the overall
performance of the proposed TriResNet network to.

• ResNet-34: This state-of-the-art network
architecture is compared with the proposed
TriResNet as it was shown to provide state-of-the-
art performance on histopathology grading [28],
[21]. Furthermore, it was compared with the
proposed TriResNet also to get a clearer idea of
the benefits of a triple-stream network architecture
in capture more diverse features for improved
performance when compared to a single-stream
network architecture. The ResNet-34 network has
the same number of residual blocks and layers as
a single residual stream of TriResNet, thus making
the comparison more direct in terms of potential
benefits.

All tested networks are implemented using
PyTorch[25], and were initialized with pre-trained
weights on the ImageNet Challenge Dataset [7]
to improve the speed of convergence. The Adam
optimizer [15] was used for training. Data augmentation
was relatively standard, with random flips, rotations,
and brightness transformations.

Performance Metrics
For both the CAMELYON16 and IDC datasets, we eval-
uated the performance of each tested network on their
ability to grade tissue image tiles as either malignant or
benign. For each network and dataset we evaluated the
following three performance metrics on the test set:

1) sensitivity = TP/(TP + FN)
2) specificity = TN/(TN + FP )
3) accuracy = (TP+TN)/(TP+TN+FP+FN)

IV. RESULTS AND DISCUSSION

Table I and Table II show the grading performance
(in terms of accuracy, sensitivity, and specificity) of the
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tested networks for the test sets of the CAMELYON16
dataset and the IDC dataset, respectively. A number of
interesting observations can be made from the quanti-
tative results. First of all, it can be clearly seen that
for both benchmark datasets, the proposed TriResNet
network achieved improved overall accuracy compared
to both the tested Inception-v3 and ResNet-34 networks.

When compared to the Inception-v3 network, the
proposed TriResNet achieves higher overall accuracy
on both datasets, with an increase of 1.8% and 1.7%
for the CAMELYON16 dataset and the IDC dataset,
respectively. Since this network has been demonstrated
to provide strong performance in histopathology im-
age grading [22] as well as general image classifi-
cation problems[29], this demonstrates that the pro-
posed TriResNet can be a very effective network for
histopathology grading.

The comparison with the ResNet-34 network demon-
strates that a multi-stream network architecture clearly
has merits compared to a single-stream network archi-
tecture for histopathology grading in terms of captur-
ing a more diverse and discriminative set of quanti-
tative features for characterizing tissue complexities in
histopathology images, with the accuracy of the pro-
posed TriResNet being higher by 3.6% and 1.2% on the
CAMELYON16 and IDC datasets, respectively.

It can also be observed that the proposed TriResNet
achieved higher sensitivity and specificity compared to
the other tested networks for the IDC dataset, which
illustrates the efficacy of the proposed network. Further-
more, what is particularly interesting to note is, while
achieving lower specificity compared to the other tested
networks, the increase in sensitivity achieved by the
proposed TriResNet is quite pronounced for the CAME-
LYON16 dataset, where the sensitivity achieved by the
proposed TriResNet network is 6.3% and 9.1% compared
to Inception-v3 and ResNet-34, respectively. The higher
sensitivity achieved by the proposed TriResNet network
is particularly important for the case of histopathology
grading, as it is more important to identify all instances
of malignancy than to have a very low number of false
positives, because of the risks associated with missed
malignant tissues leading to patients not being treated
for malignant cancer.

Rather than simply discuss the strengths of the pro-
posed TriResNet network for the purpose of tile-level
histopathology grading, we also study the limitations
of its abilities by looking at some example tissue im-
age tiles that are incorrectly graded by the proposed
TriResNet, as shown in Fig. 6. It can be observed that
both the proposed TriResNet as well as the ResNet-
34 network have some systematic difficulties grading in

TABLE I
COMPARISON OF TESTED NETWORKS ON TILE-LEVEL GRADING

FOR THE TEST SET OF THE CAMELYON16 DATASET. NUMBERS
SHOWN INDICATE TEST SET PERFORMANCE, AND BEST

PERFORMANCE FOR EACH CATEGORY IS HIGHLIGHTED IN BOLD

Network Accuracy Sensitivity Specificity
Inception-v3 85.3% 75.9% 95.9%
ResNet-34 83.5% 73.1% 96.5%
TriResNet 87.1% 82.2% 91.2%

TABLE II
COMPARISON OF TESTED NETWORKS ON TILE-LEVEL GRADING

FOR THE TEST SET OF THE IDC DATASET. NUMBERS SHOWN
INDICATE TEST SET PERFORMANCE, AND BEST PERFORMANCE

FOR EACH CATEGORY IS HIGHLIGHTED IN BOLD

Network Accuracy Sensitivity Specificity
Inception-v3 89.2% 91.4% 83.1%
ResNet-34 89.7% 92.3% 82.9%
TriResNet 90.9% 93.1% 85.1%

certain circumstances. For example, one repeated issue
experienced by both TriResNet and ResNet-34 was the
difficulty associated with grading when there was a
large amount of adipose tissue. In addition to this, the
networks experienced difficulties when the color of the
tissue is different from what is considered the norm; for
example, as more malignant tissues tend to look more
purple, the networks falsely used this as an indication of
malignancy in some benign tissues. Greater diversity of
tissues and stains used during training of the networks
should alleviate these issues. Finally, it is important to
note that while the proposed TriResNet network achieves
very strong performance compared to the other tested
networks, it is also noticeably larger in terms of network
size compared to the other networks, although for clinical
purposes accuracy is in general more important than
inference speed.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced a deep triple-stream
residual network (TriResNet) architecture designed to
better learn more diverse and discriminative features
for characterizing complex tissue characteristics, and
thus provide improved tile-level histopathology grad-
ing. Experimental results across two widely-used bench-
mark datasets demonstrated the efficacy of the proposed
TriResNet in achieving increased accuracy when com-
pared to two state-of-the-art networks. The promising
results achieved using the proposed TriResNet network
indicate that such a network could be a useful tool to aid
pathologists in improving the consistency, accuracy, and
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Fig. 6. Examples of tissue image tiles that were misclassified by
both TriResNet and ResNet-34. The top row shows examples that are
actually benign tissue, but were falsely considered malignant, and
the bottom set shows malignant tissue that was considered benign.

speed of analyzing large volumes of whole histopathol-
ogy slides containing millions of cells. In the future, we
hope to leverage improved data augmentation strategies
to handle some issues experienced by the proposed
TriResNet network associated with staining diversity, as
well as more comprehensive testing and evaluation with
a larger variety of histopathology image data. Further-
more, a more comprehensive and fundamental trade-
off analysis between the number of streams within the
network and the level of performance achieved would be
quite useful to better understand network design.
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