
Revisiting Hyper-Parameter Tuning for

Search-based Test Data Generation

Shayan Zamani and Hadi Hemmati

Department of Electrical and Computer Engineering, University of Calgary, Calgary,
Canada

{shayan.zamani1,hadi.hemmati}@ucalgary.ca

Abstract. Search-based software testing (SBST) has been studied a
lot in the literature, lately. Since, in theory, the performance of meta-
heuristic search methods are highly dependent on their parameters, there
is a need to study SBST tuning. In this study, we partially replicate a
previous paper on SBST tool tuning and revisit some of the claims of
that paper. In particular, unlike the previous work, our results show
that the tuning impact is very limited to only a small portion of the
classes in a project. We also argue the choice of evaluation metric in the
previous paper and show that even for the impacted classes by tuning,
the practical difference between the best and an average configuration is
minor. Finally, we will exhaustively explore the search space of hyper-
parameters and show that half of the studied configurations perform the
same or better than the baseline paper’s default configuration.

Keywords: Search-based software engineering · test data generation ·
hyper-parameter · tuning · replication.

1 Introduction

Since the early days of search-based software engineering (SBSE), the topic of
search-based software testing (SBST) has been continuously studied and im-
proved [20]. There are now several great publicly available SBST tools such as
EvoSuite for unit testing Java programs that are continuously being maintained
and improved [10]. SBST has even gone far beyond academia and started to be
deployed in large scale, e.g., in Facebook [19].

In general, SBST techniques reformulate a test generation problem, e.g.,
maximizing branch coverage of unit tests, to an objective function and em-
ploy a meta-heuristic search technique to optimize the objective. Examples of
these meta-heuristic search techniques are hill climbing, simulated annealing, and
evolutionary algorithms [17]. Evolutionary Algorithms, like Genetic Algorithm
(GA), are among the most common techniques that have been used in SBST,
so far. However, there are debates on whether using evolutionary algorithms or
keep generation test data with random methods [22].

ar
X

iv
:1

90
6.

02
34

9v
1 

 [
cs

.S
E

] 
 5

 J
un

 2
01

9



A GA starts with a set of initial population to search through the search
space. Then it evolves the candidate solutions by permuting the encoded so-
lutions with genetic and natural selection operations [20], in several iterations,
until it finds the optimal solution or exhausts the search budget. Therefore, the
choice of the objective function, the chromosome encoding format, and GA’s
input parameters (SBST’s hyper-parameters) such as population size, crossover
rate, mutation rate, etc. can have a significant impact on the effectiveness of
the SBST technique [14]. For instance, it has been illustrated in previous work
that the coverage of EvoSuite for a class varies with the values of GA’s hyper-
parameters [4].

Therefore, finding an optimal configuration of hyper-parameters could po-
tentially, improve the SBST’s effectiveness, significantly. In general, there are
many parameters to be tuned for a GA. For example, Grefenstette used six pa-
rameters to tune its GA, namely, Population Size, Crossover Rate, Mutation
Rate, Generation Gap, Scaling Window and Selection Function [16]. However,
in another paper, 19 different operators or parameters are listed that contribute
in the performance of a given GA and it is suggested that one should take into
account the permutation of all these 19 parameters’ values[14].

Although the tuning problem is being studied in other areas frequently
[5,7,6,8], there are not many successful reports of tuning techniques in SBST.
Arcuri et al. tried to find a tuned setting for EvoSuite that works better than its
default for a collection of classes (SF100). However, the resulting branch cover-
age after tuning was less than the default configuration’s results [4]. Therefore, it
is quite important for researchers in the field, as as well as practitioner, to know
whether tuning is needed before using a SBST technique for test data generation
and if so how much improvement a tuning method could potentially bring.

In this paper, we partially replicate Arcuri and Fraser’s paper titled “Param-
eter tuning or default values? An empirical investigation in search-based software
engineering”, which was published in Empirical Software Engineering journal in
2013 [4]. The paper is one of the very few studies on the hyper-parameter tuning
of SBST techniques. It includes three case studies, where the first one focuses on
illustrating the impact of tuning. The two other case studies then investigate the
effectiveness of a proposed tuning method (which showed no improvement com-
pared to default settings). In our study, we only focus on the impact of tuning,
thus only the first case study of their paper (from now on called “the baseline
paper”) will be (partially) replicated.

In particular, we focus on the first two research questions of the first case
study, in the baseline paper, where the main findings are:

– “Different parameter settings cause very large variance in the performance”
– “Default parameter settings perform relatively well, but are far from opti-

mal”.

Here we argue that the conclusions are taken from the set of 20 handed
picked classes, which do not represent the entire project’s classes. We exhaus-
tively study the impact of tuning, with the similar hyper-parameter search space
as the baseline paper (1,200 different configurations), on 117 classes of three



random projects from the very same SF100 and show that different parameter
settings do NOT have the significant impact that is claimed. We show this first
by looking into all classes vs. a handpicked set and second by measuring im-
provements using the raw coverage (the number of extra branches covered when
using a different configuration) rather than a relative measure used in the base-
line paper. Together we show that the impact of tuning is much less than the
reported ones. In addition, we show that the true impact is limited to the maxi-
mum improvement ranges (called “potentials” in this paper) in the project-level,
which are 64% of class-level potentials. Finally, we analyze the distribution of
the entire 1,200 configurations of hyper-parameters in terms of their effectiveness
and show that half of the configurations are performing at least as well as the
default configuration. This means that even a randomly selected configuration
would have a 50% chance to be better than the default setting, but the issue is
the improvements are minor (maximum 12 extra branches per project), anyways.

The main contributions and findings of this paper are as follows:

– Running an exhaustive search with over 2 million configuration/class pair
evaluations, to study the impact of hyper-parameter tuning.

– Replicating the previous study on tuning and showing (clarifying) that, in
contrary to the reported results, on average, different parameter settings
cause no change in coverage at all on most (81%) classes.

– Showing that, in some cases, a relative coverage measure may not be the best
metric to explain the potentials of tuning. Tuning for only 12 extra branches
per project would be reported as 52% average improvement per class using
the relative coverage.

– Showing that half of the possible configurations perform as well or better
than the default configuration, but overall, the practical improvements are
insignificant in most cases.

2 Empirical Study

In this section, we will explain the details of our experiment design and results.

2.1 Objective and Research Questions

Our objective is to revisit the previous study on the impact of tuning on SBST, by
partially replicating our baseline paper, introduced in the introduction section.
Our main hypotheses are that a) not all classes in a project are significantly
sensitive to parameter tuning, b) the improvement of coverage is magnified in
previous studies, and c) most configurations are already good and don’t leave
much room for improvement in the SBST context. To investigate the above
hypotheses, we design the following research questions:

– RQ1: What portion of classes in a project would be sensitive to hyper-
parameter tuning?
The idea of this question is to first identify classes that won’t be affected at
all no matter what configuration will be used.



– RQ2: To what extent code coverage of classes within a project may change,
when the hyper-parameters of SBST techniques change?
Knowing the answer to RQ1, we now need to know how much potential im-
provement one can gain by tuning, to decide whether tuning is even worth-
while (if the portion of sensitive classes is small the potentials are negligible,
tuning is not justifiable).

– RQ3: How are different hyper-parameter configurations (including the de-
fault from the baseline paper) compared in terms of their resulting code cov-
erage?
The goal of this RQ is to dig deeper into the effectiveness of different config-
urations and see where a default configuration sits comparing to a median
setting.

2.2 Experiment Design

Subjects under study: We have selected three random projects from the
SF100 Java benchmark (which is a well-known dataset in SBST and have been
used in the previous work. It is also the same source for our baseline paper [4]),
namely, JSecurity, Geo-Google, and JOpenChart. We made sure that the sizes of
our selected projects are around or greater than the median project size within
SF100, which is 35 classes[11], per project, so that we don’t study only the
trivial projects, by chance. In addition, we checked that the average number of
branches per class in our selected projects are around the median value of SF100
projects, which is 18 branches (See table 2). Therefore, by considering these two
measurements, we believe that our random selected classes are representative of
other SF100 projects.

The summary of SF100 projects’ properties is available in the table 1 from
the information available in [11]:

Min Median Average Max

# of Classes per Project 1 35 87.84 2189
# of Branches per Class 0 18 33.20 2480

Table 1: Summary of SF100 projects statistics

Project # of Classes # of Branches Average # of Branches per Class

JSecurity 72 998 13.86
Geo-Google 52 1344 25.84
JOpenChart 38 693 18.24

Table 2: Statistics of randomly selected projects from data in [11]

SBST tool: In order to evaluate the tuning techniques, we use the well-known
open source SBST tool, EvoSuite [10], [12]. EvoSuite is also the tool that was
used in the baseline paper [4]. EvoSuite accepts Java bytecode of a class and
creates a test suite that maximizes different criteria (e.g., branch coverage) using
a Genetic Algorithm for optimization [13]. The GA parameters it employs are



configurable. If no specific parameter is passed to EvoSuite, it will use a default
setup that we refer to as “EvoSuite defaults” or the “baseline paper defaults”.
EvoSuite defaults have been selected by following guidelines, best practices, and
experimentation, and have shown to be quite good and reasonable in the previous
study [4].

Measurements: In this study, we use code (branch) coverage as our test ade-
quacy measure, to be consistent with our baseline paper [4]. In addition to the
raw coverage data (number of the covered branches as well as their percent-
ages), we also report ”Relative Coverage“, which is suggested [2] and used in the
baseline paper [4]. The rationale of using the relative coverage in the baseline
paper was that “using the raw coverage values for parameter setting comparisons
would be too noisy. Most branches are always covered regardless of the chosen
parameter setting, while many others are simply infeasible”.

Therefore, for a given configuration with resulting branch coverage equal to
b on class c, we report Relative Coverage rc(b,c) as defined below:

RelativeCoverage =
b−min

max−min

where b is the number of covered branches, and min and max are the minimum
and maximum number of branches covered in the class c over all experimented
configurations.

During the experiments, we report both raw coverage and the relative cov-
erage and discuss this choice of metric.

Among all classes within a project, there are some classes that have the same
coverage for any configuration at any iteration, and their max and min values
are the same. We call them as insensitive classes.

Experiment Procedure: The experiments investigate the sensitivity of the
three projects under study, in terms of branch coverage, when the GA hyper-
parameters changes. Basically, we define a set of limited values per GA parameter
(in EvoSuite) and run an exhaustive search over this search space. We then run
EvoSuite per configuration and calculate branch coverage for all classes within
each project.

The search space consists of the combination of 5 most important parameters
of GA in EvoSuite, i.e. population size, crossover rate, elitism rate, selection
function, and parent replacement check. In the tuning literature, there are some
cases in which more parameters are considered to be tuned [14,16]. However, due
to the extreme cost of exhaustive search and to be consistent with our baseline
paper, we limit the tuning to these five parameters.

In the following, there is a brief explanation of the parameters of our interest
to be tuned:

1. Crossover Rate: It is the probability with which two candidates selected from
the parent generation are crossed over.



2. Population Size: This parameter indicates how many individuals exist in
each generation and due to mutation and crossover operations the population
remains constant while evolving.

3. Elitism Rate: This parameter determines how many or what percentage of
top individuals are exempted from any crossover or mutation during evolu-
tion and are directly passed to the next generation without any modification.

4. Selection Function: This parameter specifies the mechanism with which in-
dividuals of a population are selected for the purpose of reproduction oper-
ations. In oppose to the other mentioned parameters, this one is not numer-
ical and is a nominal variable. Three types of known selection methods are
roulette wheel selection, tournament selection, and rank selection.
In the roulette wheel selection method, individuals with more fitness score
are more probable to be selected.
In tournament selection, based on the tournament size a number of individ-
uals are selected uniformly and this method does not weight the selection
probability regarding fitness score.
Rank selection considers fitness score into its selection method; however, un-
like roulette wheel selection, the probability is not proportional to fitness
score, rather it is based on the rank of individuals.
Therefore, the fittest individuals do not dominate the selection like what
happens in the tournament approach.

5. Parent Replacement Check: If this parameter is considered in the genetic
algorithm, it checks the two off-springs, which are generated in the repro-
duction phase, against their parents. If they do not show an improvement in
fitness score compared to at least one of their parents, they are not included
in the next generation, and the algorithm continues with the parents in the
next generation [4].

Following the baseline paper (the settings from its first case study) [4], we
also have limited the values per parameter to a small discretized sub-samples,
as follows:

– Crossover rate: 0, 0.2, 0.5, 0.75, 0.8, 1 (6 cases)
– Population size: 4, 10, 50, 100, 200 (5 cases)
– Elitism rate: 0, 1, 10%, 50% (4 cases)
– Selection: roulette wheel, tournament with size either 2 or 10, and rank

selection with bias either 1.2 or 1.7 (5 cases)
– Parent replacement check: activated or not (2 cases)

Thus, the search space under exploration in this study includes 6 × 5 × 4 ×
5 × 2 = 1, 200 different combinations of GA parameters, used by EvoSuite.

During an experiment, we take a pair of one configuration and one class, each
time, and evaluate this pair’s coverage using EvoSuite, with a search budget of
two minutes, which is a realistic amount in practice and was used in the baseline
paper as well. In order to address randomness, we repeat each evaluation 10
times. The average coverage of these repetitions is then reported as the pair’s
coverage.



There are 177 classes in total, in the three projects under study. Consider-
ing 10 repetitions of evaluating these classes on a search space of 1,200 con-
figurations, where each evaluation takes two minutes, this analysis would take
177×10×1200×2 minutes equals to more than 8 years, on a single core machine.
Therefore, we used computer clusters to run this amount of computation in par-
allel. The clusters in use were ComputeCanada (Graham with 32-core instances
and Cedar with 48-core instances) and Cybera (8-core instances), which are all
Linux-based systems, summed up to 360 nodes.

Note that all the scripts and output results are publicly available 1.

2.3 Results

In this section, we will report and explain the results of the experiments per
research question.

RQ1 (Insensitive classes): As discussed in Section 2.2, a large proportion
of classes within a project may be insensitive to hyper-parameter tuning, which
affects the usefulness of tuning in practice. In RQ1, we report this proportion
per project in our study. Looking at Table 3 we see that 86% (73 out of 85),
95% (53 out of 56), and 50%(18 out of 36) of classes were insensitive to hyper-
parameter tuning in our three projects. The number of classes that we observed
in the projects are different from what is presented in table 2 which were taken
from [11]. This is due to the reason that the projects are still changing, and
versions are different. The high number of insensitive classes in each project

Project #Classes #Insensitive Classes Proportions

JSecurity 85 73 0.86
Geo-Google 56 53 0.95
JOpenChart 36 18 0.50

Total 177 144 0.81

Table 3: The proportion of insensitive classes per projects.

highlights that although tuning SBST techniques for some classes may be useful
(see RQ2), the coverage of most classes in a given project will not be affected by
tuning. Thus, applying an umbrella tuning on all classes of a project may not
be effective, and the impact of tuning may be only limited to a small portion of
the project.

This is in contrary with this generic claim from the baseline paper [4]: “Dif-
ferent parameter settings cause very large variance in the performance”. The
issue with that claim is that it is based on the 20 manually selected classes,
where the tuning was indeed effective. The justification for this selection is given
as “We, therefore, selected classes where EvoSuite used up its entire search bud-
get without achieving 100% branch coverage, but still achieved more than 80%

1 https://github.com/sea-lab/EvoSuiteTuning



coverage.” Though this might be a fine selection criterion to detect the sensitive
classes, the problem is that the conclusions are generic and do not consider the
significant number of insensitive classes.

In fact, our study on 177 classes shows that a blanket tuning over all classes
of a project will NOT have a very large variance in the SBST technique’s perfor-
mance. Insensitive classes are mainly the ones that are trivial and easy for the
SBST tool to evaluate. The analysis of insensitive classes in the projects under
study shows that 85% (123 out of 144) of them have branch coverage more than
0.9 while 4% (6 out of 144) of them are very difficult to cover and their branch
coverage is lower than 0.2, regardless of the configuration. Figure 1 summarizes
the distribution of classes per project, over the coverage range.

0 0.5 1
0

20

40

60

Coverage

C
la

ss
C

o
u
n
ts

(a) JSecurity

0 0.5 1
0

20

40

Coverage

(b) Geo-Google

0 0.5 1
0

5

10

15

Coverage

(c) JOpenChart

Fig. 1: Distribution of 144 insensitive classes in 3 projects, over the coverage
range.

So our conclusion is that tuning will NOT make a big difference in the cov-
erage of the entire project. So, in the SBST context, the tuning effort should be
focused only on the sensitive classes. Obviously, this first requires a systematic
approach to detect such classes, before tuning, and second a metric that only
considers those classes when evaluating the improvements, which we discuss more
in RQ2.

On average, more than 81% (144 out of 177) of classes in three projects under
study were insensitive to 1,200 different configurations of GA

hyper-parameters.

RQ2 (Evaluation metric): As discussed in the RQ1 results, the coverage of
most classes in a project are indifferent to the hyper-parameter configuration of
the SBST technique. In this section, we will assess the potential of the remaining
sensitive classes to improve their branch coverage by SBST tuning, with two
metrics: number of covered branches and relative coverage. Then, we will discuss
how useful are these metrics, in this context.

Table 4 reports the number of total branches per class (the Branch column)
and summarizes the branch coverage as the number of covered branches vs. rela-
tive coverage (explained in Section 2.2). For each category, it reports the median,



Covered Branches Relative Coverage
Project Class Names Branch Median Worst Best Median Worst Best

JSecurity

DefaultWebSessionFactory 75 55.6 50.40 58 0.71 0.54 0.78
AbstractSessionManager 89 65.4 58.67 70.8 0.48 0.24 0.67
DefaultSessionManager 33 21 16.50 25.4 0.52 0.33 0.71
MemoryAuthenticationDAO 24 20.75 9.50 24 0.81 0.15 1.00
AbstractAuthenticator 47 28.4 21.60 29 0.96 0.56 1.00
SimpleAuthorizationContext 57 52 51.25 53 0.38 0.28 0.50
ThreadContext 24 17 16.67 18.25 0.17 0.11 0.38
DAOAuthenticationModule 12 5 5.00 10 0 0.00 1.00
DefaultSessionFactory 9 5 5.00 6.2 0 0.00 0.30
MemorySessionDAO 24 22.8 21.75 24 0.60 0.25 1.00
DelegatingSession 20 17 17.00 17.6 0 0.00 0.20
ModularAuthenticator 18 8 8.00 8.6 0 0.00 0.20
SimpleSessionEventSender 18 18 17.60 18 1.00 0.80 1.00
ActiveDirectoryAuthenticationModule 14 7 6.50 7 1.00 0.75 1.00
SimpleAuthenticationEventSender 29 28 27.20 28 1.00 0.60 1.00
WebUtils 15 15 14.75 15 1.00 0.75 1.00
LdapAuthenticationModule 27 16 15.75 16 1.00 0.75 1.00
AnnotationAuthorizationModule 13 8.6 8.00 9 0.60 0.00 1.00

Average 30.44 22.81 20.62 24.32 0.57 0.34 0.76

Geo-Google
AddressToUsAddressFunctor 30 22 8.5 22 1.00 0.21 1.00
GeoAddressStandardizer 38 27 23.6 28.5 0.87 0.64 0.97
MappingUtils 8 6.1 5.4 6.6 0.37 0.13 0.53

Average 25.33 18.37 12.5 19.03 0.74 0.33 0.83

JOpenChart

CoordSystemUtilities 92 70.4 39.8 89.33 0.69 0.25 0.96
RadarChartRenderer 22 2 2 6.00 0.00 0.00 0.20
CoordSystem 71 65.2 59.6 69.00 0.75 0.37 1.00
DefaultChart 20 6 5.8 15.80 0.07 0.05 0.72
BarChartRenderer 16 7.6 4 11.80 0.40 0.14 0.70
InterpolationChartRenderer 17 12 8.75 13.40 0.67 0.40 0.78
AbstractChartDataModel 37 27.8 22.75 31.40 0.62 0.16 0.95
DefaultChartDataModelConstraints 30 28.8 22.2 30.00 0.89 0.29 1.00
StackedChartDataModelConstraints 54 51 46.8 51.00 1.00 0.58 1.00
LineChartRenderer 17 12 9.2 13.40 0.60 0.32 0.74
PieChartRenderer 14 2 2 5.60 0.00 0.00 0.36
StackedBarChartRenderer 18 13.6 7.8 15.80 0.66 0.08 0.88
PlotChartRenderer 11 9.6 7 10.00 0.93 0.50 1.00
DefaultChartDataModel 34 34 32.6 34.00 1.00 0.72 1.00
AbstractRenderer 7 6.2 3.5 7.00 0.84 0.30 1.00
ChartEncoder 9 4.8 3 6.00 0.60 0.00 1.00
Legend 12 11.6 10.25 12.00 0.87 0.42 1.00
AbstractChartRenderer 16 15.00 14.8 15.00 1.00 0.80 1.00

Average 27.61 21.08 16.77 24.25 0.64 0.30 0.85

Overall 31.14 23.48 19.73 25.87 0.67 0.34 0.86

Table 4: Sensitive classes in the projects under study, and their coverage in terms
of the number of covered branches and the relative coverage.

the worst, and the best numbers overall 1,200 × 10 configuration evaluations,
per class. The last row of each project summarizes all columns per project.

Following the relative metric, suggested in the baseline paper, we can con-
clude that the range of relative coverage per class is huge when looking at the
best vs worst relative coverage (On average 42%, 50%, and 55% in JSecurity,
Geo-Google, and JOpenChart projects, respectively). However, if we look at the
raw coverage numbers the range between the best and the worst configuration,
with respect to the number of covered branches are pretty small (3.7, 6.53, and
7.48 in JSecurity, Geo-Google, and JOpenChart projects, respectively). These



numbers can be minimal for some classes, e.g., in the JSecurity project, there
are 8 classes (out of 15 classes) where the difference between the best and the
worst configurations is less than one branch (which practically can be called an
insensitive class).

In other words, although the relative coverage metric shows a great potential
(52%) for improvement using a tuning technique, the actual raw numbers reveal
that the practical impact is limited to a few branches (on average 6.14 extra
). This is equal to (6.14/31.14) 19.7% improvement on raw branch coverage.
Although even the 6.14 extra branches might be among buggy ones and thus
a good tuning would in fact result in extra bug detection, but the point we
make here is that the measurement should be reflective of the real-world effect.
If the raw potential is 19.7% (regardless of how many more bugs potentially
can be detected by such a tuning) we should not say the potential is 52%. This
artificially exaggerates expectations from a tuning method.

Another point is that the impact of tuning is not going to be on the scale
of the range of coverage as reported above (The Best - The Worst). In practice,
choosing the worst configuration is rare. Even a random configuration would be
better than the median results in 50% of the times. Thus, a more reasonable
comparison is to set the expectations for improvement between the best and the
median, not the worst. Following this approach, the improvement in raw branch
coverage per class would be even smaller (25.87 - 23.48 = 2.39 branches, equals
to 2.39/31.14 = 7.7% potential coverage improvement for each class).

Therefore, we can conclude that although using relative coverage can avoid
noises in the results, in some cases, it exaggerates the effectiveness of SBST tool
tuning while there are only a few extra branches to be covered.

Following the above discussion, in RQ3, we will look deeper into the distri-
bution of configurations and their corresponding results.

Looking at relative coverage are not always helpful in terms of measuring
tuning potentials. On average, an extra 6 branches on a total of 31 branches

in sensitive classes would be reported as 52% improvement in relative coverage
– In addition, the potential improvement on raw branch coverage when

comparing the best and the median is just 2.39 branches, per class.

RQ3 (Distribution of configurations): In RQ2, we listed the best/ worst/
median configurations for each sensitive class of projects under study. When it
comes to tuning an SBST tool on a project scale, the problem changes a bit.
The goal is no longer finding the best configuration per class. It is rather finding
one single tuned configuration that works the best over all classes of the project.
Note that these two (the class-level and the project-level best configurations) are
different. In many cases, It might not be possible to have a configuration that
works best for all classes.

Therefore, it is obvious that it might not be possible for a tuning method
to be as good as the best configuration as reported in RQ2. So, we define a



“Maximum/Minimum” configuration as the best/worst possible configuration
in a project-level, as the configuration that results in the highest total branch
coverage over all classes in the project. This follows the baseline paper’s definition
of “optimal” (equal to our “Maximum”) configuration, as well.

Now to see the real impact of tuning, in table 5, we report the Maximum
and Minimum results per project. We also report the Best and Worst from RQ2
aggregated on a project-level to show that these two measures are different.

Overall, we can observe that the range of feasible coverage (Maximum -
Minimum ) of a given project is quite smaller than the range of potential coverage
reported in RQ2. Looking at table 5, the feasible ranges of coverage for projects
JSecurity, GeoGoogle, and JOpenChart are only 54, 86, and 52 (on average 64)
percents of the potential ones, reported in RQ2, respectively.

Thus, when it comes to assessing the impact of tuning, we have to measure
it with raw coverage measures and look at the feasible coverage range bounds.

In practice, a typical SBST tool would have a default configuration, which
tuning’s goal is to improve its performance. So the next question is to see how
EvoSuite default configuration performs in comparison to the other configura-
tions in the search space.

The current values of EvoSuite default configuration for the hyper-parameters
of our interest are as follows:

– Crossover rate: 0.75
– Population size: 50
– Elitism rate: 1
– Selection: rank selection with bias either 1.7
– Parent replacement check (activated)

Project-level Potential Range Class-level Potential Range
Project Total Maximum Minimum All Best All Worst Median Default

JSecurity 1093 828.20 792.33 843.85 777.13 818.0 822.6
Geo-Google 1408 1371.6 1354.8 1372.1 1352.5 1370.0 1370.3
JOpenChart 795 667.8 579.55 697.53 562.85 644.0 639.7

Table 5: The number of branches per project, the class-level and project-level
potential ranges of covered branches, and the median and default performance.

Looking at last two columns of Table 5, we will see that although the default
configuration of EvoSuite is working well and is very close to the Maximum
(optimal) coverage of each project (only misses less than 11.66 branches, on
average), the median covered branches of all configurations is also very close
(missing only 11.86 branches, on average), and performs even better than default
for the JOpenChart project.

This suggests that 50% of configurations in our 1,200-member search space,
i.e. 600 configurations, are working with a performance very close to or better
than the default, which means one has at least 50% chance to select a config-
uration as good or better than the default, randomly, without any tuning. In
figure 2, the entire distribution of configurations and their yielded coverage is
illustrated, for all three projects.



790 800 810 820 830
0

200

400

600

Number of Covered Branches

C
o
n
fi
g
.

C
o
u
n
ts

(a) JSecurity

1,355 1,360 1,365 1,370
0

200

400

600

800

1,000

Number of Covered Branches

C
o
n
fi
g
.

C
o
u
n
ts

(b) Geo-Google

600 650
0

100

200

300

400

Number of Covered Branches

C
o
n
fi
g
.

C
o
u
n
ts

(c) JOpenChart

Fig. 2: Distribution of 1,200 configurations in the search space over coverage, per
project.

Tuning in practice is done on the entire project level, which on average has a
36% less potential for improvement compared to what was reported in RQ2 –

As the observed median coverage suggests, half of the configurations are
performing as well or better than the default configuration.

2.4 Threats to Validity

In terms of construct validity, the metrics that we used in our experiments
are the number of covered branches and relative coverage which both are very
common metrics in the context of software search-based testing to illustrate
branch coverage. In RQ2, we compared the results of these two metrics and
avoided the relative coverage reported in the baseline paper.

In terms of conclusion validity, we address the randomness of the SBST
coverage results by repeating each experiment 10 times with different random
seeds and taking averages. Note that since we do not directly compare different
techniques and rather just show the ranges a statistical significant test was not
applicable.

To minimize internal validity, we replicated the baseline paper as much as
possible. We used the same tool, dataset, and hyper-parameters. The only part
which was slightly different was that we used the current default values of Evo-
Suite, whereas the baseline paper used the default values at the time. Although
the overall results are not that different, we wanted to make sure that we use the



best default the tool comes with when comparing it with median configuration
results. In addition, one possible threat is changing the default configuration
from what is used in [4] to what is used in the current version of EvoSuite (i.e.
1.0.6). Our assumption is that given the wealth of projects that use EvoSuite
on SF100 and beyond, over the years from the publishing time of the baseline
paper, the new baseline has improved and provides even better results (or at
least equal) to those reported in the baseline paper. So it is safe to focus only
on the new version of EvoSuite defaults.

Regarding external validity, more empirical studies are needed to generalize
the results. Our results are limited to SF100 (not even covering that all). So we
need to replicate the study on more SF100 projects and beyond. In addition,
we are limited to GA-based SBST (the EvoSuite implementation). Therefore,
more experiments are needed where other GA or non-GA-based SBST tools are
studied, with respect to the tuning impact. However, given the extreme cost of
this type of study, our results are very valuable. The replication nature of the
paper is also indirectly helping on the generalization of this type of studies.

3 Related Works

One of the most influential works in tuning in the context of search-based soft-
ware testing is the empirical study of effect of tuning evolutionary algorithms on
test data generation tools [3], which was extended later on in the baseline paper
for our study [4]. Their preliminary work focuses on 20 random Java classes and
uses the relative coverage metric. They noted that there is a high variance of cov-
erage when a different configuration is set for the SBST tool [3]. Later, knowing
that tuning is effective for improving the coverage, they applied response surface
methodology tuning method on 10 large-scale projects with 609 classes in total
to assess only 280 configurations. But, the raw coverage of the tuned configura-
tion was found to be less than default coverage. They reported that the tuning
method in use was not working in the SBST context [4]. Later, Kotelyanskii et al.
replicated this study using Sequential Parameter Optimization Toolbox (SPOT)
method and confirmed that the default setting for EvoSuite is performing well,
and tuning cannot outperform it [18]. In contrast, in our study, we studied 177
Java classes from three projects on the whole set of configurations rather than
on a few configurations.

While the aforementioned papers are the closest ones in terms of the context
of our study, there are many other papers that used and confirmed their finding
about effectiveness of tuning in other applications of SBSE. For example, in the
configuration of Software Product Lines problem based on stakeholder needs, two
meta-heuristics were evaluated with different hyper-parameter settings. It was
found that the performance of algorithms depends on the hyper-parameter set-
tings [21]. Parameter tuning of machine learning approaches to solving software
effort estimation problem has been also studied, and it was shown that param-
eter settings make a difference in the results of machine learning performance
[23]. In addition, it was found that tuning machine learning defect predictors



can improve the performance, and it can even change the decisions on what are
the important factors of software development [15]. In another study on 6 clone
detection tools that are used widely, it was shown that tool configuration can im-
prove the performance [24]. In our study, however, we claim that this dependency
to the hyper-parameter settings in the context of our interest doesn’t change the
results significantly and is limited to covering only a few more branches.

4 Conclusion and Future Work

This paper revisits the problem of hyper-parameter tuning in SBST, studied in
a previous publication. Studying 177 Java classes from 3 random projects from
SF100, we observed that 81% of classes are insensitive to tuning. Moreover, the
evidence from this study implies that the relative coverage improvement, used
in the baseline paper, may unhelpfully exaggerate the effectiveness of tuning.
Exhaustively searching through 1,200 configurations in the hyper-parameters
search space, we conclude that not only EvoSuite default but also half of the
configurations are covering most of the branches missing only about 12 branches
per project compared to the best feasible coverage.

Regardless of the low potentials for tuning observed in this study, the next
main observation is that the potentials are much higher in the individual class-
levels than the entire project tuning. Thus for future works, we will try to devise
a tuning method that looks at the static features of classes and tunes the con-
figurations in class-level rather than project-level. Moreover, we will try more
GA-based (e.g., EvoMaster [1]) and non-GA-based SBST (e.g., [9] ) techniques
to confirm and generalize our findings and will extend our study to more Java
projects from SF100 and beyond.

References

1. A. Arcuri. Evomaster: Evolutionary multi-context automated system test genera-
tion. In Proceedings of the 2018 IEEE 11th International Conference on Software
Testing, Verification and Validation (ICST), pages 394–397, Apr. 2018.

2. A. Arcuri and L. Briand. A practical guide for using statistical tests to assess
randomized algorithms in software engineering. In Proceedings of the 33rd Inter-
national Conference on Software Engineering, pages 1–10, 2011.

3. A. Arcuri and G. Fraser. On parameter tuning in search based software engineering.
In International Symposium on Search Based Software Engineering, pages 33–47.
Springer, 2011.

4. A. Arcuri and G. Fraser. Parameter tuning or default values? an empirical in-
vestigation in search-based software engineering. Empirical Software Engineering,
18(3):594–623, Jun 2013.

5. E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and J. R. Woodward.
Exploring hyper-heuristic methodologies with genetic programming. In Computa-
tional Intelligence: Collaboration, Fusion and Emergence. 2009.

6. B. G. W. Craenen and A. E. Eiben. Stepwise adaption of weights with refinement
and decay on constraint satisfaction problems. In Proceedings of the 3rd Annual
Conference on Genetic and Evolutionary Computation, pages 291–298, 2001.



7. B. Crawford, R. Soto, E. Monfroy, W. Palma, C. Castro, and F. Paredes. Parameter
tuning of a choice-function based hyperheuristic using particle swarm optimization.
Expert Systems with Applications, 40(5):1690–1695, 2013.

8. R. Feldt and P. Nordin. Using factorial experiments to evaluate the effect of genetic
programming parameters. In Proceedings of the European Conference on Genetic
Programming, pages 271–282, 2000.

9. R. Feldt and S. Poulding. Broadening the search in search-based software testing:
It need not be evolutionary. In Proceedings of the Eighth International Workshop
on Search-Based Software Testing, pages 1–7, 2015.

10. G. Fraser and A. Arcuri. Evosuite: Automatic test suite generation for object-
oriented software. In Proceedings of the 19th ACM SIGSOFT Symposium and the
13th European Conference on Foundations of Software Engineering, pages 416–419,
2011.

11. G. Fraser and A. Arcuri. Sound empirical evidence in software testing. In 2012
34th International Conference on Software Engineering (ICSE), pages 178–188.
IEEE, 2012.

12. G. Fraser and A. Arcuri. Whole test suite generation. IEEE Transactions on
Software Engineering, 39(2):276–291, Feb. 2013.

13. G. Fraser and A. Arcuri. A large-scale evaluation of automated unit test genera-
tion using evosuite. ACM Transactions on Software Engineering and Methodology,
24(2):8:1–8:42, Dec. 2014.

14. B. Freisleben and M. Härtfelder. Optimization of genetic algorithms by genetic
algorithms. In Artificial Neural Nets and Genetic Algorithms, 1993.

15. W. Fu, T. Menzies, and X. Shen. Tuning for software analytics: Is it really neces-
sary? Information and Software Technology, 76:135–146, 2016.

16. J. Grefenstette. Optimization of control parameters for genetic algorithms. IEEE
Transactions on Systems, Man, and Cybernetics, 16(1):122–128, Jan. 1986.

17. M. Harman. The current state and future of search based software engineering. In
Future of Software Engineering (FOSE ’07), pages 342–357, 2007.

18. A. Kotelyanskii and G. M. Kapfhammer. Parameter tuning for search-based test-
data generation revisited: Support for previous results. In Proceedings of the 2014
14th International Conference on Quality Software, pages 79–84, 2014.

19. K. Mao, M. Harman, and Y. Jia. Sapienz: Multi-objective automated testing
for android applications. In Proceedings of the 25th International Symposium on
Software Testing and Analysis, pages 94–105. ACM, 2016.

20. P. McMinn. Search-based software testing: Past, present and future. In Proceedings
of the 2011 IEEE Fourth International Conference on Software Testing, Verifica-
tion and Validation Workshops, pages 153–163, 2011.

21. A. S. Sayyad, K. Goseva-Popstojanova, T. Menzies, and H. Ammar. On parame-
ter tuning in search based software engineering: A replicated empirical study. In
Proceedings of the 2013 3rd International Workshop on Replication in Empirical
Software Engineering Research, pages 84–90, 2013.

22. S. Shamshiri, J. M. Rojas, G. Fraser, and P. McMinn. Random or genetic algorithm
search for object-oriented test suite generation? In Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation, pages 1367–1374, 2015.

23. L. Song, L. L. Minku, and X. Yao. The impact of parameter tuning on software
effort estimation using learning machines. In Proceedings of the 9th International
Conference on Predictive Models in Software Engineering, pages 9:1–9:10, 2013.

24. T. Wang, M. Harman, Y. Jia, and J. Krinke. Searching for better configurations: A
rigorous approach to clone evaluation. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, pages 455–465, 2013.


	Revisiting Hyper-Parameter Tuning for Search-based Test Data Generation

