
Towards Automated Boundary Value Testing
with Program Derivatives and Search

Robert Feldt and Felix Dobslaw

Dept. of Computer Science and Engineering,
Div. of Software Engineering,

Chalmers University of Technology,
Gothenburg, Sweden,

robert.feldt@chalmers.se

Abstract. A natural and often used strategy when testing software is to
use input values at boundaries, i.e. where behavior is expected to change
the most, an approach often called boundary value testing or analysis
(BVA). Even though this has been a key testing idea for long it has been
hard to clearly define and formalize. Consequently, it has also been hard
to automate.

In this research note we propose one such formalization of BVA by, in a
similar way as to how the derivative of a function is defined in mathemat-
ics, considering (software) program derivatives. Critical to our definition
is the notion of distance between inputs and outputs which we can for-
malize and then quantify based on ideas from Information theory.

However, for our (black-box) approach to be practical one must search for
test inputs with specific properties. Coupling it with search-based soft-
ware engineering is thus required and we discuss how program derivatives
can be used as and within fitness functions.

This brief note does not allow a deeper, empirical investigation but we
use a simple illustrative example throughout to introduce the main ideas.
By combining program derivatives with search, we thus propose a practi-
cal as well as theoretically interesting technique for automated boundary
value (analysis and) testing.

Keywords: Automated software testing, Search-based software testing,
Boundary value analysis, Information theory, Partition testing

1 Introduction

Software systems increasingly govern our modern society and it is essential that
we have effective and efficient ways to avoid that they contain critical faults. An
old and natural way for software practitioners to think when creating software
tests is to try to identify borders where the behavior of the software should
change (the most). Even though such boundary value analysis (BVA) and testing
(BVT) based on it is a classic technique in the software testing literature [5], and
typically a mandatory part of relevant textbooks and certification programs [17,

ar
X

iv
:1

90
5.

11
19

8v
1 

 [
cs

.S
E

] 
 2

7 
M

ay
 2

01
9



2], there has been only limited progress on how to objectively formalize and
define it in a general way.

Boundary value analysis is closely related to partition analysis (PA) which
divides the input domain for the software under test (SUT) into sub-domains
for which we expect the behavior to be uniform for all inputs within the do-
mains [12]. If the software behaves incorrectly on a sub-domain, the intuition is
that it should fail for many or all of its elements. Further, if this holds true, we
only need to test one or a few inputs per sub-domain which reduces the testing
efforts many-fold. Practical experience also shows that software developers fre-
quently introduce faults at domain borders, for example the common ‘off-by-one’
errors [11]. Identifying boundaries in the input domain and adding test cases to
detect faults at such boundaries is thus often an effective testing strategy.

After the initial papers by White and Cohen [20] and Clarke et al. [5] that
introduced and extended the basic method for boundary value analysis and
testing1 it was further refined by a number of authors. Jeng and Weyuker [19]
simplified and generalized the approach to also cover discrete-valued inputs and
Jeng and Forgacs [13] then proposed a semi-automated approach in which a
dynamic search for test inputs is combined with algebraic manipulation of the
boundary conditions in order to more efficiently generate test data for BVT.

However, a downside of all of these approaches is that they target numeric
real-valued inputs. Discrete-valued inputs are sometimes supported by approx-
imation schemes. Only recently did Zhao et al. [22] consider string inputs and
showed how to generate test data to better find problems at borders in code
with string predicates. Their basic idea is to introduce a specific string distance
metric that is adapted to how strings are typically compared (lexicographically)
in string predicates. Since software not only allow for numeric or string inputs,
but frequently also complex and structured inputs, it is not obvious how BVA
may be generalised or how it facilitates automated testing.

In this research note we argue that a general and sound basis for BVA can be
created by considering the information distance between test inputs and their
resulting outputs. The information distance is based on Kolmogorov complexity
and is thus applicable to any type of object [3] and thereby to any type of software
input. Since Kolmogorov complexity is not computable it may seem as though
little has been gained. But by approximating it with compression algorithms it
has been shown repeatedly and in various domains that these information theo-
retical metrics can reach state-of-the-art results [4, 18]. Furthermore, they can do
so without any specific knowledge about the objects features, their importance,
or the type of similarity to be considered.

Feldt et al. [10] have previously applied these metrics to measure the dis-
tance between software tests and proposed their use to search for test cases.
More recently, Feldt et al. [9] generalized these results to search for diverse sets
of test cases and Marculescu and Feldt [15] investigated distance metrics in ro-
bustness testing. In this research note, we propose a further application of these
information theoretic measures in software testing: searching for pairs of test in-

1 also called domain testing in several papers but less so in recent years.



puts for automated boundary value testing based on the normalized compression
distance.

In the following we first introduce a short, illustrative example in Section 2.
Then, in Section 3, we introduce a general formalism for the location of bound-
aries which is inspired by the concept of the classic single-value derivative of a
function in (mathematical) calculus. In Section 4, we apply our approach to an
implementation of the illustrative example specification, and locate boundaries
without source-code access, i.e. in a black-box manner. This note closes with a
discussion on ways forward and in particular how to use our proposed program
derivative in search-based software testing for automated BVA.

2 Illustrative Example: Constrained Sum

We focus on the general situation where there is a given specification and then
some software that implements it. Further, we don’t have or don’t want to access
the source code and we seek relevant boundaries for testing. Thus, a black-box,
boundary value testing scenario. We here simply call this example (a variant of)
the constrained sum problem with the specification:

Constrained Sum: The software should calculate the sum of two
floating input values. The result should be returned with one (signifi-
cant) decimal. Negative input values are invalid, as well as any inputs
or outputs larger than or equal to 6.

Figure 1, on page 6, shows a conceptual picture of the boundaries the software
engineer had in mind while writing and reasoning about this function for the
software system.

3 Difference Quotient and Derivative of a Program

The classic derivative from mathematical calculus is based on comparing the
difference between the outputs of a function given as small a change as possible
in the inputs. It is typically formally defined in terms of one point, x, and a delta
value, h, which together define a second point after summation. The derivative
is then the limit as the delta value goes to zero:

lim
h→0

f(x + h)− f(x)

h

We argue that this, very general, idea is close to what we want to do in
boundary value analysis. We need something akin to a derivative for a software
program. A derivative in standard, mathematical calculus measures the sensi-
tivity to change of a quantity (often called the function value or the dependent
variable) as determined by another quantity (the independent variable). A large
(absolute value of a) derivative thus indicates large sensitivity to the input, in-
dependent, variable. Detecting inputs that are highly sensitive to small changes,



i.e. nearby inputs for which outputs differ a lot, would thus help us identify
boundaries. It is there where we likely should spend more time testing.

However, in contrast to the continuous, single-input functions studied in
mathematical calculus, programs in software can have other types than real-
valued numbers as inputs and/or outputs. They also commonly have more than
one input and sometimes more than one output. The latter problem can be
approached in a similar way to how it is done in calculus, i.e. for functions of
multiple input values we can define partial derivatives. The former problem con-
cerning the restricted domains is more fundamental. How can we construct a
new input point from a given input point and a ‘delta’ value, and what does
the ‘delta’ even mean, e.g. for structured input domains such as graphs, trees or
databases?

In order to resolve this we take the alternative viewpoint on defining deriva-
tives, namely the ‘difference quotient’ over an interval [21]:

DQ(a, b) =
f(a)− f(b)

a− b

The derivative can now be found by letting the input b go towards the input a.
Note that the subtract operation ‘-’ here, essentially, acts as a distance function
twice, once for the outputs and once for the inputs2. For software programs,
when neither the inputs nor the outputs might be numbers, we must generalize
this and allow for a general distance function for any type of data (inputs and
outputs) rather than assuming we can simply use subtraction. Formally we thus
define the Program Derivative as follows:

Definition 1 The Program Derivative (PD) for program P at input a, with
output distance function do, and input distance function di is

PDdo,di
(a) = PDQdo,di

(a, bmin) =
do(P (a), P (bmin))

di(a, bmin)
with

bmin = argmin
b,b6=a

di(a, b),

where P (x) denotes the output of the program for input x.

The PD and the program difference quotient3, PDQ, are parameterized on
two distance functions: one for the inputs and one for the outputs. They may be
the same but need not be; it depends on the types of the inputs and outputs, re-
spectively, and which of the often many possible distance functions for one type

2 Subtraction also preserves directionality, however, in the following we focus purely
on the distance (the absolute value) rather than on its directionality (which we argue
is less clear a concept for arbitrary data types).

3 We note that for search-based testing the PDQ, used on the right hand side of the
PD definition, might be a more fruitful concept than the derivative itself since, for
complex and high-dimensional data domains the closest value to another value can
be ill-defined, and there can be several directions that are interesting to consider for
sensitivity and rates of change (not only the one of the closest ‘neighbour’).



are chosen. The most general choice of distance function is to use the Normal-
ized Information Distance (NID) for both inputs and outputs since it is both
universal and general and should capture any important differences [3, 18]. We
will call thisfar theoretical measure the information difference quotient (IDQ).
By using the ‘compression trick’ of Cilibrasi and Vitanyi we can approximate the
IDQ by substituting a compression function, C, for Kolmogorov complexity [4].
We thus define the Compression Difference Quotient (CDQ) of a program P for
inputs a and b:

CDQC(a, b) = PDQNCDC ,NCDC
(a, b) =

NCDC(P (a), P (b))

NCDC(a, b)

where NCD is the Normalized Compression Distance [4]. However, we note
that if either the inputs or the outputs are numbers, numerical vectors or ma-
trices it may be sensible to use data-type specific distance functions. In general
we thus talk about the PDQd1,d2

where d1 and d2 is by default NCD, but can
be any chosen as any suitable distance function.

The program derivative and its quotient thus imply whole families of concrete
measures that can be instantiated and then utilized for different testing and
analysis purposes. By selecting specific distance functions and calculating the
quantities defined by the formulas above, we should be able to detect areas of
special interest for software comprehension and quality assurance tasks.

The connection to search-based software testing seems rather direct. For com-
plex and structured data types it might be very hard to define how to maximize
and minimize the involved quantities or take ‘delta’ steps between values. Thus,
even though more exact search and optimization approaches might be useful for
some programs and distance functions we can always fall back on general, black-
box, meta-heuristic optimization. A good base choice might be an evolutionary
search algorithm connected to a data generation framework, e.g. [7], but also
alternative search methods can be called for [8, 14].

4 Boundary Value Analysis of Constrained Sum

For the purpose of understanding local output differences for the software in
our illustrative example from Section 2, we applied the CDQC on the grid of
values in the range covered by x, y ∈ [-2, 8]. For each point in a cell on a grid
we then sampled a set of surrounding points, calculated CDQC , and selected
the one with the maximal value4. We then color-coded the CDQC values in
order to visualize the local differences in a two-dimensional plane presented in
Figure 2a. The darker the color of a pixel, the more diverse the outputs of the
neighboring inputs it represents according to the applied generic measure. This
way, and even without specification, we can learn local functional properties for
the software system regardless of its input and output data types (since any data
can be dumped to a string and a compressor applied to it).

4 In an automated BVA tool we would instead have used search here.



0,0 6

x

y

6

Fig. 1: Boundaries as
conceptualized for the
constrained sum pro-
gram.

Figure 2b shows the result of the exact same ex-
periment for another program with the same inter-
face. The plot is clearly dissimilar to Figure 2a which
suggests that it does not implement the specification.
When looking more closely we find that the region
of similar values in the center is larger, and in fact
the second program allows for the sum to be larger or
equal to 7. Comparing this to the conceptual image
of what we expect the software to do, Figure 2a, it
seems clear that there might be some problem with
the implementation in Figure 2b. Further, we might
want to reason about the significance of the ‘bound-
aries’ outside of the triangle in Figure 2a.

−2

0

6

8

−2 0 6 8
x

y

Color Scale
[5.1,5.35)
[5.35,5.6)
[5.6,5.84)
[5.84,6.09)
[6.09,6.34)
[6.34,6.59)
[6.59,6.84)
[6.84,7.09)
[7.09,7.34)

(a) Program one.

−2

0

6

8

−2 0 6 8
x

y

Color Scale
[5.1,5.29)
[5.29,5.49)
[5.49,5.69)
[5.69,5.88)
[5.88,6.08)
[6.08,6.27)
[6.27,6.47)
[6.47,6.66)
[6.66,6.86)

(b) Program two.

Fig. 2: Heatmaps of the program derivative values for each cell of a part of the
two-dimensional input space for two different implementations of the constrained
sum specification from Section 2. One program implements the specification
(left) and one does not (right). Boundaries of changing behavior are clearly
present.

5 Discussion

We have proposed program derivatives to detect boundaries for boundary value
analysis and testing. They can be seen as a generalisation of derivatives of single-
valued mathematical functions in calculus. While the mathematical derivative
and differential calculus of Leibniz and Newton focus on numbers, we propose the
use of information distance and the complexity trick to generalize this concept to
any input and output data types. It can thus be applied to any program. While



there have been some proposals for derivatives of specific types of programs such
as parsers [16] we know of no general attempts as the one proposed in this paper.

Since this is only a brief research note there are many avenues for future work.
The illustrative example we used here was chosen for simplicity and visualisation
and as such takes numbers as inputs, which goes against our main motivation.
However, the outputs can be of many different types (exceptions were thrown
for invalid values, for example) so already on this simple example the NCD
allowed comparing values of different types. But future work should also explore
the many different ways in which these proposed derivatives and differential
quotients can be used in fitness functions and coupled with search-based testing.
For example, Marculescu and Feldt [15] proposed a search-based algorithm to
find a border between the valid and invalid values of a program under test.
We should combine this type of search to ‘squeeze’ a border with the measures
proposed in here to even find other types of borders.

Furthermore, it is not clear that minimizing the denominator in difference
quotients is the single possible goal. For constructing sets of interesting test cases
we will most likely need a multi-objective formulation that combines diversity
of sets of values [9] and derivatives/quotients. Practical work on how to select
interesting and relevant distance functions for particular purposes and how to
speed up distance calculations are also important and recent advances show
promise [6].

A more conceptually intriguing area for future work would be to consider
derivatives and quotients of other types of program- and test-related information.
As was noted already by Feldt et al. [10], all types of test-related information
can be used in information distances and their approximations might have value.
They also calculated distances and diversities both on inputs, state information
captured in execution traces, and outputs. Alshahwan and Harman later saw
promising results when using output diversity [1]. Nevertheless, we propose to
investigate the benefits of relating different diversities and distances to each
other in more ways than outlined here. For example, we can consider different
partial derivatives or relating other quantities, e.g. the derivative of a program’s
state (output) with respect to one of its inputs (state variables). A lot of future
work seems called for.

References

1. Alshahwan, N., Harman, M.: Augmenting test suites effectiveness by increasing
output diversity. In: 2012 34th International Conference on Software Engineering
(ICSE). pp. 1345–1348. IEEE (2012)

2. Bath, G., McKay, J.: The Software Test Engineer’s Handbook: A Study Guide for
the ISTQB Test Analyst and Technical Analyst Advanced Level Certificates, 2nd
ed. Rocky Nook (2012)

3. Bennett, C.H., Gács, P., Li, M., Vitányi, P.M., Zurek, W.H.: Information distance.
Information Theory, IEEE Transactions on 44(4), 1407–1423 (1998)

4. Cilibrasi, R., Vitányi, P., De Wolf, R.: Algorithmic clustering of music based on
string compression. Computer Music Journal 28(4), 49–67 (2004)



5. Clarke, L.A., Hassell, J., Richardson, D.J.: A close look at domain testing. Software
Engineering, IEEE Transactions on (4), 380–390 (1982)

6. Cruciani, E., Miranda, B., Verdecchia, R., Bertolino, A.: Scalable approaches for
test suite reduction. In: 41st International Conference on Software Engineering
(ICSE). IEEE (2019)

7. Feldt, R., Poulding, S.: Finding test data with specific properties via metaheuris-
tic search. In: 2013 IEEE 24th International Symposium on Software Reliability
Engineering (ISSRE). pp. 350–359. IEEE (2013)

8. Feldt, R., Poulding, S.: Broadening the search in search-based software testing: it
need not be evolutionary. In: Proceedings of the Eighth International Workshop
on Search-Based Software Testing. pp. 1–7. IEEE Press (2015)

9. Feldt, R., Poulding, S., Clark, D., Yoo, S.: Test set diameter: Quantifying the
diversity of sets of test cases. In: 2016 IEEE International Conference on Software
Testing, Verification and Validation (ICST). pp. 223–233. IEEE (2016)

10. Feldt, R., Torkar, R., Gorschek, T., Afzal, W.: Searching for cognitively diverse
tests: Towards universal test diversity metrics. In: Software Testing Verification
and Validation Workshop, 2008. ICSTW’08. IEEE International Conference on.
pp. 178–186. IEEE (2008)

11. Glass, R.L.: Frequently forgotten fundamental facts about software engineering.
IEEE software (3), 112–110 (2001)

12. Hierons, R.M.: Avoiding coincidental correctness in boundary value analysis. ACM
Transactions on Software Engineering and Methodology (TOSEM) 15(3), 227–241
(2006)

13. Jeng, B., Forgács, I.: An automatic approach of domain test data generation. Jour-
nal of Systems and Software 49(1), 97–112 (1999)

14. Löscher, A., Sagonas, K.: Targeted property-based testing. In: Proceedings of the
26th ACM SIGSOFT International Symposium on Software Testing and Analysis.
pp. 46–56. ACM (2017)

15. Marculescu, B., Feldt, R.: Finding a boundary between valid and invalid regions
of the input space. arXiv preprint arXiv:1810.06720 (2018)

16. Might, M., Darais, D., Spiewak, D.: Parsing with derivatives: a functional pearl.
In: Acm sigplan notices. vol. 46, pp. 189–195. ACM (2011)

17. Spillner, A., Linz, T., Schaefer, H.: Software testing foundations: a study guide for
the certified tester exam. Rocky Nook, Inc. (2014)

18. Vitányi, P.M., Balbach, F.J., Cilibrasi, R.L., Li, M.: Normalized information dis-
tance. In: Information theory and statistical learning, pp. 45–82. Springer (2009)

19. Weyuker, E.J., Jeng, B.: Analyzing partition testing strategies. IEEE transactions
on software engineering (7), 703–711 (1991)

20. White, L.J., Cohen, E.I.: A domain strategy for computer program testing. Soft-
ware Engineering, IEEE Transactions on (3), 247–257 (1980)

21. Wikipedia: Difference quotient — Wikipedia, the free encyclopedia (2019),
\url{https://en.wikipedia.org/wiki/Difference_quotient}, [Online; ac-
cessed 23-May-2019]

22. Zhao, R., Lyu, M.R., Min, Y.: Automatic string test data generation for detecting
domain errors. Software Testing, Verification and Reliability 20(3), 209–236 (2010)


