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Multi Agent System for Machine Learning
Under Uncertainty in Cyber Physical
Manufacturing System

Bang Xiang Yong and Alexandra Brintrup

Abstract Recent advancements in predictive machine learning has led to its appli-
cation in various use cases in manufacturing. Most research focused on maximising
predictive accuracy without addressing the uncertainty associated with it. While ac-
curacy is important, focusing primarily on it poses an overfitting danger, exposing
manufacturers to risk, ultimately hindering the adoption of these techniques. In this
paper, we determine the sources of uncertainty in machine learning and establish
the success criteria of a machine learning system to function well under uncertainty
in a cyber-physical manufacturing system (CPMS) scenario. Then, we propose a
multi-agent system architecture which leverages probabilistic machine learning as a
means of achieving such criteria. We propose possible scenarios for which our pro-
posed architecture is useful and discuss future work. Experimentally, we implement
Bayesian Neural Networks for multi-tasks classification on a public dataset for the
real-time condition monitoring of a hydraulic system and demonstrate the useful-
ness of the system by evaluating the probability of a prediction being accurate given
its uncertainty. We deploy these models using our proposed agent-based framework
and integrate web visualisation to demonstrate its real-time feasibility.

1 INTRODUCTION

The use of machine learning (ML) has gained increasing popularity in a vari-
ety of manufacturing applications such as predictive maintenance, fault diagnosis,
scheduling optimisation and product quality inspection [1]. To deploy these data-
driven methods in industrial settings, various architectures such as multi-agent sys-
tems [2] and service-oriented architectures [3] have been proposed.
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A missing ingredient from these approaches is the measurement of uncertainty.
Although manufacturing systems are characterised by heterogeneous distributed
systems, dynamic and uncertain environments, currently deployed approaches fo-
cus primarily on maximising the accuracy of predictions. Without reasoning on the
uncertainty of data-driven systems, manufacturers are exposed to risk in events such
as sensor failures or overconfident and erroneous predictions, hindering the adoption
of promising ML techniques in factory environments due to mistrust [4].

For this purpose, probabilistic modelling provides a framework for representing
and manipulating the uncertainty of predictive models [5]. Recent research has led
to development of models which are not only able to handle high-dimensional data
with high accuracy but at the same time, quantify the model’s uncertainty. Deep
probabilistic models such as Bayesian Convolutional Neural Network [6, 7] and
Deep Gaussian Process [8] are emerging in areas such as computer vision, au-
tonomous vehicles [9] and disease detection [10]. However, there is a lack of re-
search in quantifying and acting upon uncertainty of predictive systems in Cyber-
physical Manufacturing systems (CPMS). This gap calls for a need to understand
the requirement and uncertainty of a data analytics system as a core component of a
CPMS.

In Section 2, we review the relevant fields and summarise the research gap for
handling uncertainty of machine learning in a CPMS, followed by establishing the
performance criteria of a predictive CPMS in Section 3. Then, we propose a multi-
agent system architecture designed to accommodate the aforementioned criteria. We
present our experimental setup in Section 4 and preliminary results in Section 5. We
conclude our results and outline future research directions in Section 6.

2 BACKGROUND

In this section, we introduce the reader to the process of deploying machine learning
in a CPMS, resulting sources of uncertainty in a CPMS and an overview of how
these have been handled in the extant literature.

2.1 Deploying Machine Learning in a Cyber-Physical
Manufacturing System

Machine learning refers to the process of extracting information and knowledge
from raw data. A machine learning system is typically abstracted into three main
layers: Data Source Layer, Data Analytics Layer and Application Layer. In a typical
CPMS, the raw data stems from sensor measurements and usually in a time-series
format and each sensor has its own sampling frequency. The data is fed to the next
layer which can exist in a cloud or edge computing environment, where the actual
machine learning processes are conducted. These would typically include prepro-
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cessing, extraction of features, training and evaluation of models and data storage
for historical analysis. The Data Analytics Layer may provide the basis of a feed-
back control loop such as adding, removing, and recalibrating the sensors. In the
application layer, the processed data is presented to the users in the form of an inter-
active visualisation. The layers which form a machine learning system in a CPMS
is depicted in Fig. 1.

In practice, as time progresses, new data is collected and as a result, the perfor-
mance of the model varies. In addition, due to physical dynamics, the health and
status of sensors can be affected. Consequently, in the event of sensor failures or un-
availability, the input data dimension changes and existing models cannot be used.
This leads to a need to monitor the predictive system and update predictive model
as changes happen.

Data Source Layer Raw data Data Analytics Layer Processed data Application Layer
Sensors attached to *  Preprocessing ¢  Visualization
Machines *  Feature extraction *  Web/Mobile app
Equipments *  Train predictive model *  Human interface
Model evaluation ¢ Business decisions
Data storage
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Fig. 1: Layers of machine learning system in cyber-physical manufacturing system

2.2 Sources of Uncertainty in a Machine Learning Model

Here, we list the uncertainty pertaining components of predictive model. These are
namely input signals, model parameters, prediction and performance. In our work,
we refer uncertainty of predictive model to either one or many of these uncertainty
components ( Fig. 2).

Data signal Predictive Model Prediction
> | Prediction
i ; Decision
Data stream Uncertainty | Uncertainty | Uncertainty ) !
of signal | of Model of Model | Uncertainty Making

Parameters | Performance | Of prediction

Fig. 2: Uncertainty components in a CPMS predictive model
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1. Input signals. Sensors always have inherent measurement uncertainty between
the measured value and true value. A framework widely adopted by national
metrology institutes for evaluating measurement uncertainty is the Guide to the
Expression of Uncertainty in Measurement (GUM) [11]. Various factors such as
noise, drifts, resolution and calibration of sensors contribute to uncertainty. The
associated uncertainty can either be static (given by manufacturer or calibration
data) or dynamic (evaluated during runtime) [12].

2. Model Parameters. The process of fitting a model to the training data involves
adjusting the parameters of the model, for example, by using the weights of neu-
ral networks. Since the model parameters can take on any value to fit the data,
they also have inherent uncertainty.

3. Prediction. In addition, every prediction has an associated uncertainty with re-
gards to the true value of what is being predicted. The prediction uncertainty is
the result of two types of uncertainty: aleatoric and epistemic uncertainty [13].
Aleatoric uncertainty refers to uncertainty caused by noisy data such as mea-
surement imprecision which can be reduced by higher measurement precision.
Whereas epistemic uncertainty is the uncertainty due to model parameters and
structure, which can be reduced by additional data.

4. Performance. Since the model is trained and tested on subsets of the data, the
distributions of the subsets will vary. Different performance metrics are used de-
pending on the tasks, such as mean-squared error for regression and accuracy for
classification. Hence, to evaluate the model’s performance on different subsets
of the data, out-of-sample techniques such as k-fold validation are often used to
get the mean and variance of the performance metrics. Alternatively, in-sampling
techniques which exploit all available information can be used where labelling
samples are expensive [14].

2.3 Handling Uncertainty in a Cyber-Physical Manufacturing
System

Numerous studies have identified the various sources of uncertainty in CPMS.
Bandyszak et al. [15] proposed a framework called Orthogonal Uncertainty Model
(OUM) which extensively documents the uncertainty within an autonomous robot
fleet. Conceptually, a taxonomy of uncertainty in CPMS has been developed in [16]
where uncertainty of sensor, situation, probe and knowledge can be interpreted un-
der the uncertainty of the predictive model.

Bayesian networks (BN) have been used widely in quantifying the uncertainty
of manufacturing processes. Wolbrecht et al. [17] used it for monitoring multistage
manufacturing process . McNaught and Chan [18] used BN for fault diagnosis and
Nannapaneni et al. [19] used BN in welding and molding processes . However,
the methods are conducted on synthetic datasets and are generally not scalable to
high-dimensional inputs. In another study, Nannapaneni et al. [20] used a two-level
dynamic BN for real-time control system which captures the uncertainty sources
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in sensors, computing resources, communication, actuation and manufacturing pro-
cess. The model involves many parameters which require assumptions on the prior
probability distribution and may not reflect reality. Experiments were also conducted
on centralised instead of distributed systems which are common in manufacturing
setting.

Bhinge et al. [21] used Gaussian Process regression to develop a predictive model
for energy prediction of machine tools from sensor data. Gaussian Process has also
been used predicting remaining useful life of bearings [22]. The benefits of this
method is its ability to quantify the uncertainty of predictions and the requirement
of less data to train the model.

Although numerous studies have identified and quantified the uncertainties of
manufacturing processes and CPMS, to this end, there is a lack of studies in quan-
tifying and acting upon the uncertainties of a machine learning system in a CPMS.
Particularly, we identify the following research gaps:

1. What are the scenarios in which quantifying the uncertainty of machine learning
is relevant?

2. What actionable insights can we gain with the quantified uncertainty of a ma-
chine learning model in a manufacturing context?

3. How can a CPMS autonomously handle the uncertainty of the machine learning
model?

3 Development of a Multi-Agent System for Manufacturing
Machine Learning Under Uncertainty

Agent-based systems comprise of multiple agents which are encapsulated software
processes situated in an environment and exhibiting autonomy, social ability, re-
sponsiveness and proactiveness [23]. In deploying predictive models, a software
system is required to execute the trained model continuously on the new input data.
For this, the usage of agent-based system for data mining has been well studied
due to its inherent nature of operating autonomously in a distributed and heteroge-
neous environment [24]. In addition, its applicability in modern cloud, fog and edge
computing environment has also been explored in multiple studies [25, 26].

3.1 Performance Criteria

Based on extant literature, we identify important properties of a machine learning
system in CPMS which need to be addressed. Moreover, we describe how these
criteria can be linked to uncertainty of predictive models.

1. Flexibility. This refers to the ease of modifying system components and struc-
ture during runtime [27]. In our context, the addition and removal of machines,



6 Bang Xiang Yong and Alexandra Brintrup

sensors, machine learning algorithms and consequent organisation of representa-
tive agents form the components of the CPMS. Such decisions can be made by
analysing the impact of structural components on the uncertainty and accuracy
of predictions.

2. Scalability. It is important for a system designer to estimate the impact of in-
creasing the number of sensors, machines and complexity of models on the sys-
tem’s performance such as communication costs, processing time, CPU usage
and memory requirement. This calls for choosing appropriate coordination mech-
anisms and system architecture to optimise the number of messages passed be-
tween system components and examine the influence of bottlenecks [28], leading
to a trade-off between processing time and resolution of uncertainty of models.

3. Heterogeneity. The system needs to accommodate multiple data sources and
multiple predictive models for various tasks.

4. Hardware Interoperability. To encourage adoption and implementation, there
is a need for interfacing with legacy and existing systems. As such, CPMS might
need to be deployed in traditional centralised systems and not strictly constrained
to cloud, edge and fog computing systems.

5. Self-Healing. We refer to self-healing, self-adaptive and reconfiguration inter-
changeably as the ability to recover from and respond to dynamic events [29, 30].
By monitoring the uncertainty of predictive model, the agents can decide when
to reconfigure. In the event of sensor failures, corrupted signals, or communica-
tion breakdown, the system should be capable of self-healing and tries its best to
recover which ensures the availability of service.

6. Safety. Since the ground truth for each prediction may not be known immedi-
ately, the uncertainty can be used as an indicator of its accuracy. This is critical
in a fail-safe scenario as it informs the user whether it is merely making a random
guess or an educated guess especially in an unfamiliar environment [9].

7. Interpretability. Interpretability of machine learning reassures the user and
builds trust on the system [9]. There needs to be an insight into the system’s
prediction and uncertainty. Knowing which sensors are relevant in contributing
to the models’ uncertainty also improves interpretability.

In light of the above requirements, Multi-agent systems appear suitable since they
are widely studied for most of the criteria such as flexibility, heterogeneity, scalabil-
ity and self-healing. Furthermore, the capabilities of intelligent agents for reasoning,
decision making, planning and learning under uncertainty [31] make them ideal for
handling uncertainty in a CPMS.

3.2 PROPOSED ARCHITECTURE

Here we propose an agent-based architecture for incorporating machine learning
under uncertainty in CPMS. In our proposed architecture, we list six agents with
distinct roles: Sensor Agent, Aggregator Agent, Predictor Agent, Model Trainer
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Agent, Decision Maker Agent and User Interface Agent. We describe the roles and
social interactions of each agent in Table 1. The reason for having separate agents
for each task such as sensing, aggregation, prediction and decision making is to
ensure the flexibility, hardware interoperability and heterogeneity of the system.

Table 1: Description of system role and social interaction for agent class

Class

System Role

Social Interaction

Sensor Agent

Data source and interface to sen-
sors in environment or machine.

In active (passive) mode, it sends (listens) to
the Aggregator Agent.

Aggregator Aggregates data from heteroge-|Interacts with the Sensor Agent for data re-
Agent neous data sources. quests and sends aggregated data to the Pre-
dictor Agent and historical database.

Predictor Agent |Runs the equipped predictive|Obtains trained model from Model Trainer
model on every pre-determined|Agent. Handles incoming aggregated data
batch of incoming data to com-|and sends out computation result to Decision
pute prediction and uncertainty. |Maker Agent.

Model Trainer|Manages, updates and deploys|Actively interacts with the Decision Maker

Agent model. Agent for deploying and updating model.

Spawns or removes the Predictor Agent.

Decision Maker
Agent

Obtains predictions with uncer-
tainty and makes final decision
based on uncertainty thresholds.

Fuses computation results from Predictor
Agents and actively communicates with
the User Interface Agent. Sends request to
Model Trainer Agent for updating or sus-
pending Predictor Agent.

User Interface

Agent

Acts as interface with the human
user to monitor overall system
and to make changes to it.

Able to inquire status and data from agents
in system based on security access level.
Reads and interprets results from the Deci-
sion Maker Agent.

Based on the social interactions among agents, we illustrate the relationship be-

tween agents in Fig. 3.

In this section, we discuss the potential scenarios for our proposed architecture.

. Handling uncertainty of predictions. The agent-based system informs the user
of the uncertainty of each prediction in real-time. This allows the user to trust the
prediction when it is certain, and disregard it when uncertain, based on an accept-
able threshold. Additionally, system engineers or the Decision Maker Agent can
better decide on improving and maintaining the system’s performance by reduc-
ing its uncertainty with provision of more data, improvement of sensor quality,
or removal of sensors.

. Dealing with addition/removal of sensors. In an attempt to increase or decrease
the number of sensors in the system, depending on the situation, new data may
be collected and the existing predictive model needs to be updated. Thus, the
system needs to incorporate mechanisms to automatically deal with changes in
numbers of inputs to the predictive model. Such decisions may rely on evaluating
the uncertainty of models. For example, if a Sensor Agent is removed and the
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Fig. 3: Proposed Architecture of Multi-Agent System
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model’s uncertainty does not increase significantly, then there may be no need in
retraining the model which can be expensive.

. Dealing with noisy or corrupted sensors. The system needs to identify exces-
sively noisy sensors which leads to high uncertainty. Alternatively, the Sensor
Agent can apply suitable filter as a preprocessing step to reduce the uncertainty
or zerorise the signal when necessary.

. Decision on multiple models. There exist various methods to fuse predictions
from multiple models [32] such as majority voting. We can extend this approach
by taking into account the uncertainty of each model’s prediction leading to a
more informed decision.

. Updating models. Queiroz et al. [33] has suggested the use of multi-agent sys-
tems to update the trained model based on system feedback. This can be extended
by incorporating uncertainty of model, for example, the model can be retrained
when the uncertainty of prediction is relatively high and to reduce the uncer-
tainty of model. The agents can also explore different models which may have
different uncertainty profiles and this leads to a decision between exploration and
exploitation.
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4 EXPERIMENTAL SETUP

We develop a prototype multi-agent system! based on Fig. 3 with the use case of
condition monitoring of a hydraulic system. We chose Python as our programming
language since many machine learning packages are available such as PyTorch [34]
and scikit-learn [35] which are used in our experiments. We implement the multi-
agent platform using osBrain [36] which is written also in Python.

Our experiments are conducted on a real world dataset for the condition moni-
toring of hydraulic system [37]. The dataset consists of 2205 cycles of 17 sensors
measurements with sampling frequencies of 1Hz, 10Hz and 100Hz. Each cycle lasts
for 60 second. We resample all sensors into 1Hz to have a consistent sequence length
for each cycle. The target variables to be classified are the conditions of the cooler,
valve, internal pump, accumulator and stability. We train a separate model for each
target variable.

The analytics pipeline consists of feature extraction, normalisation and a Bayesian
Neural Network (BNN). For feature extraction, we extract the mean, standard de-
viation, minimum, maximum, sum, median, skewness and kurtosis from both the
time and frequency domains for each cycle. This results in 272 feature inputs. Then
we normalise the extracted features, and feed them into the BNN. The network con-
sists of 3 hidden layers with 272-544-272 nodes respectively. Each node’s weight
is represented by a probability distribution initialised as uniform distribution and
trained using Bayes by Backprop [38]. The model is trained for 300 epochs, with
learning rate of 0.005 and Adam optimiser [39]. We split the data set into training
and testing sets using k-fold validation, where k equals to 5. To obtain the proba-
bility distribution of each prediction, we sample the model 50 times using Monte
Carlo. We obtain the modal class as the prediction class and its class percentage
as the certainty measure. For evaluation of model performance, we compute the
F1-score and conditional probability of a prediction being accurate given its uncer-
tainty. Upon completing the model training and evaluation, we load the model into
Predictor Agent for continuous predictions.

We specify the sequence diagram in Fig. 4 for processing the raw data into the
final prediction. The Aggregator Agent acts as a trigger by first requesting sensor
data from associated Sensor Agents. It waits for all responses and aggregate them to
be sent off to Predictor Agent. Then, the Predictor Agent runs the machine learning
model on the received aggregated data and sends off the prediction and uncertainty
to Decision Maker Agent for reasoning process. The Decision Maker Agent imple-
ments a simple filtering on the predictions based on the certainty threshold. Those
above the certainty threshold, which we set as 80%, is labelled ’certain’ and below
as ’uncertain’. In the background, User Interface Agent periodically fetches data
from the agents to visualise the agent network relationship, sensor readings, predic-
tion and uncertainty on a web interface.

! Code are available at https://github.com/bangxiangyong/agentMet4FoF
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Fig. 4: Sequence diagram of sensor data aggregation, prediction and decision
making

S RESULTS

For the model performance evaluation, the results are tabulated in Table 2. Fur-
thermore, we show that the prediction uncertainty can be used as a precursor for
estimating a prediction’s accuracy which is not known in run-time. For instance, for
classifying the cooler’s condition, given that a prediction is certain, the likelihood of
being accurate is 99.70% whereas when it is uncertain, it drops to 63.57%. Hence,
this can be used as a warning to the user whenever the prediction state is uncertain.
In addition, this gives us an insight into the model’s prediction and adds safety to
the system in uncertain scenarios.

Table 2: Model performance on condition monitoring tasks for classifying
conditions of cooler, valve, internal pump, accumulator and stability

Classification Task F1-Score P(Accurate | Certain) |P(Accurate | Uncertain)
Cooler Condition 0.99 £ 0.0002 99.70 £+ 0.05 63.57 £5.13
Valve Condition 0.84 + 0.005 95.46 £ 0.16 64.69 + 0.66
Internal Pump Leakage [0.90 £ 0.002 96.56 £ 0.23 66.91 £ 0.45
Hydraulic Accumulator |0.76 £ 0.01 95.84 £0.19 61.26 +1.21
Stable Flag 0.92 + 0.008 96.84 + 0.57 59.92 £2.43

The interactive web interface is depicted in Fig. 5. The agents are displayed in a
network graph along with their relationships and updated as the topology changes.
As time progresses, new prediction and uncertainty are visualised in the time-series
graphs, demonstrating the feasibility of deploying multiple probabilistic machine
learning models and communicating their uncertainty in our proposed architecture.
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Fig. 5: Screenshot of web interface for testing multi-agent system

6 CONCLUSIONS

In this paper, we explored the issue of handling machine learning uncertainty in
CPMS. Firstly, we reviewed the lifecyle of a predictive model according to CRISP-
DM, the deployment of machine learning in a CPMS environment. Then, we iden-
tified the sources of uncertainty in a machine learning model. These are namely
the input signals, model parameters, predictions and performance. Next, we out-
lined the performance criteria of adopting machine learning in a CPMS under un-
certainty, including flexibility, scalability, heterogeneous, hardware interoperability,
self-healing, safety and interpretability. We discussed that in meeting these criteria,
designing a multi-agent system based architecture appear to be ideal choice.

Hence, we proposed an agent-based architecture to deploy machine learning un-
der uncertainty in CPMS which consists of six primary agents. We described their
roles in the system and their interactions with other agents. We also specified the
sequence diagram from the process of sensor data aggregation, and prediction up to
decision making.

Experimentally, a prototype of the envisioned multi-agent system was developed
and tested. Using a public dataset, we implemented multiple Bayesian Neural Net-
work models for classifying the conditions of a hydraulic system and deployed these
models in the multi-agent system testbed. A web interface for visualising and man-
aging the multi-agent system was also presented. We evaluated the performances
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of the proposed system and demonstrate its effectiveness of reasoning upon the un-
certainty of prediction by evaluating the probability of a prediction being accurate
given its uncertainty. We classified each prediction into certain and uncertain pre-
dictions based on a reasonable certainty threshold of 80%. We find that for all tasks,
the prediction accuracy is much higher given it is certain than when it is uncertain.
Thus, agents can take actions to reduce the uncertainty when the current prediction
is uncertain to avoid possibly erroneuous predictions. We thus conclude that our ap-
proach can be used to increase the safety and interpretability of using the machine
learning system in a CPMS.

For future work, we aim to further develop, implement and analyse our proposed
architecture based on the outlined performance criteria in variety of scenarios such
as handling uncertainty of predictions, failure of sensors, fusing multiple models
and updating models. We will further investigate the relationship between predic-
tive uncertainty and accuracy, and how agents can make decisions to manage the
uncertainty. Lastly, we aim to deploy and test in a distributed data environment such
as cloud and fog computing environment.
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