Skip to main content

R-3RPS Robot-Based Mathematical Modeling for a Military Flight Simulator

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2019)

Abstract

In the present article we explain the analytical deduction of the kinematic model of a flight simulator, based on a 3 RPS parallel robot with rotation of its lower base, through the resolution of the inverse and direct kinematic problems. The trajectories of the illusions of the simulator were generated with the use of interpolation of speeds and angular accelerations of the final effector, in addition to the operating specifications of the manipulator. For the verification of results, an interface was implemented with the use of MATLAB to simulate the trajectories generated in the obtained model and to verify the analytical kinematic relations proposed together with the simulation in ANSYS. The results obtained from the interface in comparison to the mechanical simulation showed a minimum margin of error between them that reached 0.1% in the worst case at the position of the upper vertices of the simulator.

This paper is part of the project “Simulador de desorientación espacial para seguridad aérea y entrenamiento de pilotos de las FF.AA” which belongs exclusively to Universidad de las Fuerzas Armadas ESPE. The affiliations of the Universitat Politècnica de Catalunya and Escuela Politécnica Nacional are exclusively of the corresponding author Dr. Wilbert G. Aguilar. The payment of the paper registration was funded exclusively by Universidad de las Fuerzas Armadas ESPE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Campos, A., García, A.: Inverse kinematics for general 6-RUS parallel robots applied on UDESC-CEART flight simulator. In: 22nd International Congress of Mechanical Engineering (COBEM 2013), Ribeirão Preto, Brazil (2013)

    Google Scholar 

  2. Salehinia, Y., Salehinia, S.: Solving forward kinematics problem of stewart robot using soft computing. In: RSI/ISM International Conference on Robotics and Mechatronics, Tehran, Iran (2013)

    Google Scholar 

  3. Caetano, J.V., de Visser, C.C., Mulder, M., Remes, B.: Linear aerodynamic model identification of a flapping wing MAV based on flight test data. Int. J. Micro Air Veh. 5(4), 273–286 (2013)

    Article  Google Scholar 

  4. Oliveira, T., Encarnação, P.: Ground target tracking control system for unmanned aerial vehicles. Springer Sci. 69, 373–387 (2012)

    Google Scholar 

  5. Aguilar, W.G., Angulo, C.: Real-time model-based video stabilization for microaerial vehicles. Neural Process. Lett. 43(2), 459–477 (2016)

    Article  Google Scholar 

  6. Aguilar, W.G., Angulo, C.: Real-time video stabilization without phantom movements for micro aerial vehicles. EURASIP J. Image Video Process. 1, 1–13 (2014)

    Google Scholar 

  7. Staicu, S.: Dynamics of the 6-6 Stewart parallel manipulator. Robot. Comput. Integr. Manuf. 27, 212–220 (2011)

    Article  Google Scholar 

  8. Bingul, Z., Oguzhan, K.: Dynamic Modeling and Simulation of Stewart Platform, no. 1, pp. 1–26. Intech (2012)

    Google Scholar 

  9. Sabbavarapu, R., Vegesina, R., Koona, R.: Design for optimal performance of 3-RPS parallel manipulator using evolutionary algorithms. Trans. Can. Soc. Mech. Eng. 37(2), 1–26 (2013)

    Google Scholar 

  10. Aguilar, W.G., Abad, V., Ruiz, H., Aguilar, J., Aguilar-Castillo, F.: RRT-based path planning for virtual bronchoscopy simulator. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10325, pp. 155–165. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60928-7_13

    Chapter  Google Scholar 

  11. Zhao, Z., Qui, Y.: Design and kinematic analysis of a novel variant 3-RPS micromotion parallel manipulator. J. Residuals Sci. Technol. 13(5), 10–18 (2016)

    Google Scholar 

  12. Aguilar, W.G., Morales, S.: 3D environment mapping using the kinect V2 and path planning based on RRT algorithms. Electronics 5(4), 70 (2016)

    Article  Google Scholar 

  13. Aguilar, W.G., et al.: Statistical abnormal crowd behavior detection and simulation for real-time applications. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds.) ICIRA 2017. LNCS (LNAI), vol. 10463, pp. 671–682. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65292-4_58

    Chapter  Google Scholar 

  14. Aguilar, W.G., et al.: Real-time detection and simulation of abnormal crowd behavior. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10325, pp. 420–428. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60928-7_36

    Chapter  Google Scholar 

  15. Krause, G., Zapico, E., Gonzales, S.: Simulador de vuelo de vehículos aeroespaciales de seis grados de libertad. Mecánica Computacional 31, 2961–2977 (2012)

    Google Scholar 

  16. Matlalcuatzi, R., Alexandrov, V.V.: Diseño del simulador dinámico para pilotos como un sistema biomecatrónico. In: Memorias del XVI Congreso Latinoamericano de Control Automático, Cancún, Mexico (2014)

    Google Scholar 

  17. Condomines, J.-P.: Experimental wind field estimation and aircraft identification. In: Researchgate, France (2015)

    Google Scholar 

  18. Izaguirre, E.: Control Desacoplado de Plataforma Neumática de 3-GDL utilizada como Simulador de Movimiento. Revista Iberoamericana de Automática e Informática Industrial 8, 143–159 (2011)

    Article  Google Scholar 

  19. Mintenbeck, J., Estaña, R.: Design, modelling and control of a hyper-redundant 3-RPS parallel mechanism. In: International Conference on Robotics and Biomimetics, Tianjin, China (2010)

    Google Scholar 

  20. Chablat, D., Jha, R., Rouillier, F., Moroz, G.: Non-singular assembly mode changing trajectories in the workspace for the 3-RPS parallel robot. In: Lenarčič, J., Khatib, O. (eds.) Advances in Robot Kinematics, pp. 149–159. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06698-1_17

    Chapter  Google Scholar 

  21. Gallardo, J.D., Orozco, H.: Acceleration analysis of 3-RPS parallel manipulators by means of screw theory. Department of Mechanical Engineering, Instituto Tecnológico de Celaya, México (2014)

    Google Scholar 

  22. Orbea, D., Moposita, J., Aguilar, W.G., Paredes, M., León, G., Jara-Olmedo, A.: Math Model of UAV multi rotor prototype with fixed wing aerodynamic structure for a flight simulator. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10324, pp. 199–211. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60922-5_15

    Chapter  Google Scholar 

  23. Aguilar, W.G., Salcedo, V.S., Sandoval, D.S., Cobeña, B.: Developing of a video-based model for UAV autonomous navigation. In: Barone, D.A.C., Teles, E.O., Brackmann, C.P. (eds.) LAWCN 2017. CCIS, vol. 720, pp. 94–105. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71011-2_8

    Chapter  Google Scholar 

  24. Aguilar, W.G., Casaliglla, V.P., Pólit, J.L.: Obstacle avoidance based-visual navigation for micro aerial vehicles. Electronics 6(1), 10 (2017)

    Article  Google Scholar 

  25. Ruiz, N., Blanco, A.: Dinámica y control de un robot paralelo 3-RPS. Pistas Educativas 39(125), 1–25 (2000)

    Google Scholar 

  26. Quiang, Y., Bin, L.: Kinematics comparative study of two overconstrained parallel manipulators. Math. Probl. Eng. 2016, 1–12 (2016)

    MathSciNet  Google Scholar 

  27. Arahashi, H.: Mathematical Problems in Engineering. MtlabSite.com (2014)

  28. Asif, U.: Design of a parallel robot with a large workspace for the functional evaluation of aircraft dynamics beyond the nominal flight envelope. Int. J. Adv. Robot. Syst. 9(2), 51 (2012)

    Article  Google Scholar 

  29. Kvrgic, V., Visnjic, Z., Cvijanovic, V.B., Divnic, D., Mitrovic, S.: Dynamics and control of a spatial disorientation trainer. Robot. Comput. Integr. Manuf. 35, 104–125 (2015)

    Article  Google Scholar 

  30. Lukanin, V.: Inverse kinematics, forward kinematics and working space determination of 3D of parallel manipulator with S-P-R joint structure. Period. Polytech. Ser. Mech. 49, 31–69 (2004)

    MathSciNet  Google Scholar 

  31. Gouasmi, M., Ouali, M.: Kinematic modelling and simulation of a 2-R robot using solidworks and verification by MATLAB/Simulink. Intech 9, 245 (2012)

    Google Scholar 

  32. Ospina, D.: Cinematica y simulacion de una plataforma robotica paralela 3-RPS. In: III Congreso Internacional de Ingeniería Mecatronica, Cali, Colombia (2012)

    Google Scholar 

  33. Villacís, C., et al.: Mathematical models applied in the design of a flight simulator for military training. In: Rocha, Á., Guarda, T. (eds.) MICRADS 2018. SIST, vol. 94, pp. 43–57. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78605-6_4

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilbert G. Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guerrón, C., Aguilar, W.G., Reyes Ch., R.P., Pinto, N., Chamorro, S., Paredes, M. (2019). R-3RPS Robot-Based Mathematical Modeling for a Military Flight Simulator. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11745. Springer, Cham. https://doi.org/10.1007/978-3-030-27529-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27529-7_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27528-0

  • Online ISBN: 978-3-030-27529-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics