Skip to main content

Trajectory Planning Based on Optimal Control and Exact Derivatives

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11745))

Included in the following conference series:

  • 2514 Accesses

Abstract

To solve the trajectory planning problem, a path constrained optimal control model is established and is solved by gradient-based numerical method. Since it is very computationally expensive for the adjoint equation method to calculate the gradients of path constraints, an exact derivative method is used to calculate the gradients of objective and path constraints accurately and efficiently. The method is achieved by regarding the objective and path constraints as explicit functions of the parametrized controls. Then the gradient can be calculated in reverse mode of automatic differentiation which requiring Jacobian information of the integrator for solving state equation. The Jacobian matrix of the new states with respect to current states and controls is analytically derived for the 4th-order Runge-Kutta method and is calculated and stored when integrating the state equation. From a study case, an OCP with inequality path constraints was discretized to nonlinear programming problem by control vector parameterization (CVP) and was solved by sequential quadratic (SQP) method. The simulation case for a differential drive robot demonstrates the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kameswaran, S., Biegler, L.T.: Simultaneous dynamic optimization strategies: recent advances and challenges. Comput. Chem. Eng. 30, 1560–1575 (2006). https://doi.org/10.1016/j.compchemeng.2006.05.034

    Article  Google Scholar 

  2. Liu, X., Chen, L., Hu, Y.: Solution of chemical dynamic optimization using the simultaneous strategies. Chin. J. Chem. Eng. 21, 55–63 (2013). https://doi.org/10.1016/S1004-9541(13)60441-3

    Article  Google Scholar 

  3. Benson, D.: A gauss pseudospectral transcription for optimal control (2005)

    Google Scholar 

  4. Goh, C.J., Teo, K.L.: Control parametrization: a unified approach to optimal control problems with general constraints. Automatica 24, 3–18 (1988). https://doi.org/10.1016/0005-1098(88)90003-9

    Article  MathSciNet  MATH  Google Scholar 

  5. Sun, F., Du, W., Qi, R., Qian, F., Zhong, W.: A hybrid improved genetic algorithm and its application in dynamic optimization problems of chemical processes. Chin. J. Chem. Eng. 21, 144–154 (2013). https://doi.org/10.1016/S1004-9541(13)60452-8

    Article  Google Scholar 

  6. Trojanowski, K., Wierzchoń, S.T.: Immune-based algorithms for dynamic optimization. Inf. Sci. 179, 1495–1515 (2009). https://doi.org/10.1016/j.ins.2008.11.014

    Article  Google Scholar 

  7. Mohamed, A.W., Sabry, H.Z.: Constrained optimization based on modified differential evolution algorithm. Inf. Sci. 194, 171–208 (2012). https://doi.org/10.1016/j.ins.2012.01.008

    Article  Google Scholar 

  8. Chen, X., Du, W., Qian, F.: Solving chemical dynamic optimization problems with ranking-based differential evolution algorithms. Chin. J. Chem. Eng. 24, 1600–1608 (2016). https://doi.org/10.1016/j.cjche.2016.04.044

    Article  Google Scholar 

  9. Canto, E.B., Banga, J.R., Alonso, A.A., Vassiliadis, V.S.: Restricted second order information for the solution of optimal control problems using control vector parameterization. J. Process Control 12, 243–255 (2002). https://doi.org/10.1016/S0959-1524(01)00008-7

    Article  Google Scholar 

  10. Betts, J.T.: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. Society for Industrial and Applied Mathematics, Philadelphia (2010)

    Book  Google Scholar 

  11. Sanz-Serna, J.M.: Symplectic runge-kutta schemes for adjoint equations, automatic differentiation, optimal control, and more. SIAM Rev. 58, 3–33 (2016). https://doi.org/10.1137/151002769

    Article  MathSciNet  MATH  Google Scholar 

  12. Hu, Y., Liu, X., Xue, A.: An improved control vector iteration approach for nonlinear dynamic optimization (I) problems without path constraints. Chin. J. Chem. Eng. 20, 1053–1058 (2012). https://doi.org/10.1016/S1004-9541(12)60586-2

    Article  Google Scholar 

  13. Liu, X., Hu, Y., Feng, J., Liu, K.: A novel penalty approach for nonlinear dynamic optimization problems with inequality path constraints. IEEE Trans. Autom. Control 59, 2863–2867 (2014). https://doi.org/10.1109/TAC.2014.2317293

    Article  MathSciNet  MATH  Google Scholar 

  14. Bloss, K.F., Biegler, L.T., Schiesser, W.E.: Dynamic process optimization through adjoint formulations and constraint aggregation. Ind. Eng. Chem. Res. 38, 421–432 (1999). https://doi.org/10.1021/ie9804733

    Article  Google Scholar 

  15. Poon, N.M.K., Martins, J.R.R.A.: An adaptive approach to constraint aggregation using adjoint sensitivity analysis. Struct. Multi. Optim. 34, 61–73 (2007). https://doi.org/10.1007/s00158-006-0061-7

    Article  Google Scholar 

  16. Zhang, Q., Li, S., Lei, Y., Zhang, X.: Newton-conjugate gradient (CG) augmented Lagrangian method for path constrained dynamic process optimization. J. Control Theory Appl. 10, 223–228 (2012). https://doi.org/10.1007/s11768-012-0032-z

    Article  MathSciNet  Google Scholar 

  17. Griesse, R., Walther, A.: Evaluating gradients in optimal control: continuous adjoints versus automatic differentiation. J. Optim. Theory Appl. 122, 63–86 (2004). https://doi.org/10.1023/B:JOTA.0000041731.71309.f1

    Article  MathSciNet  MATH  Google Scholar 

  18. Walther, A.: Automatic differentiation of explicit Runge-Kutta methods for optimal control. Comput. Optim. Applic. 36, 83–108 (2007). https://doi.org/10.1007/s10589-006-0397-3

    Article  MathSciNet  MATH  Google Scholar 

  19. Birgina, E., Evtusenko, Y.: Automatic differentiation and spectral projected gradient methods for optimal control problems. Optim. Methods Softw. 10(2), 125–146 (1998)

    Article  MathSciNet  Google Scholar 

  20. Birgina, E., Evtusenko, Y.: Automatic differentiation and spectral projected gradient methods for optimal control problems. Optim. Methods Softw. 10, 125–146 (1998). https://doi.org/10.1080/10556789808805707

    Article  MathSciNet  Google Scholar 

  21. Zhang, X., Li, S., Lu, S.: Exact derivative calculation for Solving optimal control problem numerically. J. Sys. Sci. Math. Scis. 35(7), 812–822 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Nocedal, J.: Numerical Optimization. Springer, New York (2006)

    MATH  Google Scholar 

  23. Abdulwahhab, O.W., Abbas, N.H.: Design and stability analysis of a fractional order state feedback controller for trajectory tracking of a differential drive robot. Int. J. Control Autom. Syst. 16, 2790–2800 (2018). https://doi.org/10.1007/s12555-017-0234-8

    Article  Google Scholar 

  24. Zhang, Y., Hong, D., Chung, J.H., Velinsky, S.A.: Dynamic model based robust tracking control of a differentially steered wheeled mobile robot. In: Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No. 98CH36207), vol. 2, pp. 850–855 (1998). https://doi.org/10.1109/ACC.1998.703528

Download references

Acknowledgement

This research was supported by the National Natural Science Foundation of China (Grant No. 51604296 and 61573378) and the Fundamental Research Funds for the Central University (Grant No. 19CX02066A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodong Zhang or Jiafeng Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Tu, L., Wu, J., Li, S. (2019). Trajectory Planning Based on Optimal Control and Exact Derivatives. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11745. Springer, Cham. https://doi.org/10.1007/978-3-030-27529-7_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27529-7_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27528-0

  • Online ISBN: 978-3-030-27529-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics