Skip to main content

A Modified Cartesian Space DMPs Model for Robot Motion Generation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11745))

Abstract

DMPs (dynamic movement primitives) are a method to generate trajectory planning or control signal for complex robot movements. Each DMP is a nonlinear dynamical system which can be used as a primitive action for complex movements. The origin DMPs are used to model the robot joint space motion, however in many cases, robot motions are defined in Cartesian space, the model of Cartesian space is necessary. A Cartesian space DMPs variant is proposed which adds a dynamical quaternions goal subsystem to make the generated cartesian space twist more smooth and steady in the initial stage in this paper. This DMPs variant can be useful in some robot tasks which often require low speed operations, such as contact operation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mülling, K., Kober, J., Kroemer, O., Peters, J.: Learning to select and generalize striking movements in robot table tennis. Int. J. Robot. Res. 32(3), 263–279 (2013)

    Article  Google Scholar 

  2. Abbeel, P., Coates, A., Ng, A.Y.: Autonomous helicopter aerobatics through apprenticeship learning. Int. J. Robot. Res. 29(13), 1608–1639 (2010)

    Article  Google Scholar 

  3. Abu-Dakka, F.J., Nemec, B., Jorgensen, J.A., Savarimuthu, T.R., Kruger, N., Ude, A.: Adaptation of manipulation skills in physical contact with the environment to reference force profiles. Auton. Robots 39(2), 199–217 (2015)

    Article  Google Scholar 

  4. Rozo, L., Jiménez, P., Torras, C.: A robot learning from demonstration framework to perform force-based manipulation tasks. Intell. Serv. Robot. 6(1), 33–51 (2013)

    Article  Google Scholar 

  5. Schaal, S.: Dynamic movement primitives - a framework for motor control in humans and humanoid robots. In: Kimura, H., Tsuchiya, K., Ishiguro, A., Witte, H. (eds.) Adaptive Motion of Animals and Machines, pp. 261–280. Springer, Tokyo (2006). https://doi.org/10.1007/4-431-31381-8_23

    Chapter  Google Scholar 

  6. Savarimuthu, T.R., Liljekrans, D., Ellekilde, L.-P., Ude, A., Nemec, B., Kruger, N.: Analysis of human peg-in-hole executions in a robotic embodiment using uncertain grasps, pp. 233–239. IEEE (2013)

    Google Scholar 

  7. Siciliano, B., Khatib, O. (eds.): Springer Handbook of Robotics, 2nd edn. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1

    Book  MATH  Google Scholar 

  8. Ijspeert, A., Nakanishi, J., Schaal, S.: Movement imitation with nonlinear dynamical systems in humanoid robots. In: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), vol. 2, pp. 1398–1403. IEEE (2002)

    Google Scholar 

  9. Xu, J., Hou, Z., Liu, Z., Qiao, H.: Compare contact model-based control and contact model-free learning: a survey of robotic peg-in-hole assembly strategies (2019)

    Google Scholar 

  10. Kober, J., Gienger, M., Steil, J.J.: Learning movement primitives for force interaction tasks. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 3192–3199 (2015)

    Google Scholar 

  11. Kulvicius, T., Ning, K., Tamosiunaite, M., Worgötter, F.: Joining movement sequences: modified dynamic movement primitives for robotics applications exemplified on handwriting. IEEE Trans. Robot. 28(1), 145–157 (2011)

    Article  Google Scholar 

  12. Stulp, F.: DmpBbo - a C++ library for black-box optimization of dynamical movement primitives (2014)

    Google Scholar 

  13. Pastor, P., Righetti, L., Kalakrishnan, M., Schaal, S.: Online movement adaptation based on previous sensor experiences, pp. 365–371. IEEE (2011)

    Google Scholar 

  14. Kou, K.I., Xia, Y.-H.: Linear quaternion differential equations: basic theory and fundamental results. Stud. Appl. Math. 141, 3–45 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nailong Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, N., Liu, Z., Cui, L. (2019). A Modified Cartesian Space DMPs Model for Robot Motion Generation. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11745. Springer, Cham. https://doi.org/10.1007/978-3-030-27529-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27529-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27528-0

  • Online ISBN: 978-3-030-27529-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics