Skip to main content

A Review of Biomimetic Artificial Lateral Line Detection Technology for Unmanned Underwater Vehicles

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11741))

Included in the following conference series:

Abstract

Due to the disturbance of complex underwater environment in the existing acoustic and optical detection systems, it is difficult for the acoustic or optical detection system to obtain accurate near-field sensing information for unmanned underwater vehicles (UUVS). This paper discusses the characteristics and difficulties of the detection technology for UUVS, and reviews the research advances with respect to the artificial lateral line (ALL) array and the signal processing. The key problems existing in the current researches are pointed out, including perception principle, layout and micro-process of ALL, and application of artificial intelligence algorithm and the approaches for solving these problems are discussed. After the above problems are solved, the ALL detection technology will have broad application prospects and application value in intelligent swarm detection for UUVS.

This work was supported by Key R&D Program Projects in Shaanxi Province (No. 2018ZDXM-GY-111); Equipment Pre-research Foundation Project (No. 61404160503); the Fundamental Research Funds for the Central Universities (No. xjjgf2018005); Major Program of National Natural Science Foundation of China (No. 61890961).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pham, L.V., Dickerson, B., Sanders, J., et al.: UAV swarm attack: protection system alternatives for destroyers. Systems Engineering Project Report. Naval Postgraduate School, California (2012)

    Google Scholar 

  2. Tyo, J.S.: Hyperspectral measurement of the scattering of polarized light by skin. In: Proceedings of SPIE, vol. 8160, no. 22, p. 31 (2011)

    Google Scholar 

  3. Sun, R.-G., Shu, X.-L., Qu, D.-W.: Multipath effect of sonar pulse waveforms in shallow water. J. Ordnance Equipment Eng. 34(12), 56–59 (2013)

    Google Scholar 

  4. Zhang, Y., Streitlien, K., Bellingham, J.G., et al.: Acoustic doppler velocimeter flow measurement from an autonomous underwater vehicle with applications to deep ocean convection. J. Atmos. Oceanic Technol. 18(12), 2038–2051 (2000)

    Article  Google Scholar 

  5. Willcox, J.S., Bellingham, J.G., Zhang, Y., et al.: Performance metrics for oceanographic surveys with autonomous underwater vehicles. IEEE J. Oceanic Eng. 26(4), 711–725 (2001)

    Article  Google Scholar 

  6. Liu, Y., Passino, K.M.: Stability analysis of swarms in a noisy environment. In: 42nd IEEE International Conference on Decision and Control. IEEE, Maui (2003)

    Google Scholar 

  7. Leonard, N.E., Fiorelli, E.: Virtual leaders, artificial potentials and coordinated control of groups. In: Proceedings of the 40th IEEE Conference on Decision and Control. IEEE, Orlando (2001)

    Google Scholar 

  8. Gallowaykevin, C., Beckerkaitlyn, P., Phillips, B., et al.: Soft robotic grippers for biological sampling on deep reefs. Soft Robot. 3(1), 23–33 (2016)

    Article  Google Scholar 

  9. Yoon, S., Qiao, C.: Cooperative search and survey using autonomous underwater vehicles (AUVs). IEEE Trans. Parallel Distrib. Syst. 22(3), 364–379 (2011)

    Article  Google Scholar 

  10. Byrne, R.H., Savage, E.L.: Algorithms and analysis for underwater vehicle plume tracing. Sandia National Laboratories, United States (2003)

    Google Scholar 

  11. Schulz, B., Hobson, B., Kemp, M., et al.: Field results of multi-UUVS missions using ranger micro-UUVSs. In: Oceans 2003. IEEE, San Diego, pp. 956–961 (2003)

    Google Scholar 

  12. Chen, J., Sun, D., Yang, J., et al.: Leader-follower formation control of multiple non-holonomic mobile robots in-corporating a receding-horizon scheme. Int. J. Robot. Res. 29(6), 727–747 (2010)

    Article  Google Scholar 

  13. Zhao, W., Hu, Y., Wang, L.: Construction and central pattern generator-based control of a flipper-actuated turtle-like underwater robot. Adv. Robot. 23(1–2), 19–43 (2009)

    Article  Google Scholar 

  14. Zou, K., Wang, C., Xie, G., et al.: Cooperative control for trajectory tracking of robotic fish. In: 2009 American Control Conference, pp. 5504–5509. IEEE, St. Louis (2009)

    Google Scholar 

  15. Shao, J., Yu, J., Wang, L.: Formation control of multiple biomimetic robotic fish. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2503–2508. IEEE, Beijing (2007)

    Google Scholar 

  16. Qiao, G., Gan, S., Liu, S., et al.: Digital self-interference cancellation for asynchronous in-band full-duplex underwater acoustic communication. Sensors 18(6), 1700 (2018)

    Article  Google Scholar 

  17. Voronina, E.P., Hughes, D.R.: Lateral line scale types and review of their taxonomic distribution. Acta Zoologica 99(1), 65–86 (2017)

    Article  Google Scholar 

  18. Bleckmann, H., Zelick, R.: Lateral line system of fish. Integr. Zool. 25(1), 411–453 (2006)

    Google Scholar 

  19. Mekdara, P.J., Schwalbe, M., Coughlin, L.L., et al.: The effects of lateral line ablation and regeneration in schooling giant danios. J. Exp. Biol. 221(Pt 8), jeb.175166 (2018)

    Article  Google Scholar 

  20. Rizzi, F., Qualtieri, A., Dattoma, T., et al.: Biomimetics of underwater hair cell sensing. Microelectron. Eng. 132, 90–97 (2015)

    Article  Google Scholar 

  21. Liu, G., Wang, A., Wang, X., et al.: A review of artificial lateral line in sensor fabrication and bionic applications for robotic fish. Appl. Bionics Biomech. 2016(5), 1–15 (2016)

    Google Scholar 

  22. Nelson, K., Mohseni, K.: Design of a 3-D printed, modular lateral line sensory system for hydrodynamic force estimation. Mar. Technol. Soc. J. 51(5), 103–115 (2017)

    Article  Google Scholar 

  23. Liu, G., Wang, M., Wang, A., et al.: Research on flow field perception based on artificial lateral line sensor system. Sensors 18(3), 838 (2018)

    Article  Google Scholar 

  24. Tan, S.: Underwater artificial lateral line flow sensors. Microsyst. Technol. 20(12), 2123–2136 (2014)

    Article  Google Scholar 

  25. Fan, Z., Chen, J., Zou, J., et al.: Design and fabrication of artificial lateral line flow sensors. J. Micromech. Microeng. 12(5), 655 (2002)

    Article  Google Scholar 

  26. Yang, Y., Nguyen, N., Chen, N., et al.: Artificial lateral line with biomimetic neuromasts to emulate fish sensing. Bioinspiration Biomimetics 5(1), 16001 (2010)

    Article  Google Scholar 

  27. Mcconney, M.E., Chen, N., Lu, D., et al.: Biologically inspired design of hydrogel-capped hair sensors for enhanced underwater flow detection. Soft Matter 5(2), 292–295 (2009)

    Article  Google Scholar 

  28. Izadi, N., Krijnen, G.J.M.: Design and fabrication process for artificial lateral line sensors. In: Frontiers in Sensing, pp. 405–421. Springer, Vienna (2012). https://doi.org/10.1007/978-3-211-99749-9_28

    Chapter  Google Scholar 

  29. Kottapalli, A.G.P., Asadnia, M., Miao, J.M., et al.: A flexible liquid crystal polymer MEMS pressure sensor array for fish-like underwater sensing. Smart Mater. Struct. 21(11), 115030 (2012)

    Article  Google Scholar 

  30. Yaul, F.M., Bulovic, V., Lang, J.H.: A flexible underwater pressure sensor array using a conductive elastomer strain gauge. J. Microelectromech. Syst. 21(4), 897–907 (2012)

    Article  Google Scholar 

  31. Asadnia, M., Kottapalli, A.G.P., Shen, Z., et al.: Flexible and surface-mountable piezoelectric sensor arrays for underwater sensing in marine vehicles. IEEE Sens. J. 13(10), 3918–3925 (2013)

    Article  Google Scholar 

  32. Asadnia, M., Kottapalli, A.G., Miao, J., et al.: Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena. J. R. Soc. Interface 12(111), 20150322 (2015)

    Article  Google Scholar 

  33. Izadi, N., De Boer, M.J., Berenschot, J.W., et al.: Fabrication of superficial neuromast inspired capacitive flow sensors. J. Micromech. Microeng. 20(8), 085041 (2010)

    Article  Google Scholar 

  34. Krijnen, G., Lammerink, T., Wiegerink, R., et al.: Cricket in-spired flow-sensor arrays. In: Sensors 2007, pp. 539–546. IEEE, Atlanta (2007)

    Google Scholar 

  35. Stocking, J.B., Eberhardt, W.C., Shakhsheer, Y.A., et al.: A capacitance-based whisker-like artificial sensor for fluid motion sensing. In: Sensors 2010, pp. 2224–2229. IEEE, Kona (2010)

    Google Scholar 

  36. Baar, J.J.V., Dijkstra, M., Wiegerink, R.J., et al.: Fabrication of arrays of artificial hairs for complex flow pattern recognition. In: Sensors 2003, pp. 332–336. IEEE, Toronto (2004)

    Google Scholar 

  37. Klein, A., Bleckmann, H.: Determination of object position, vortex shedding frequency and flow velocity using artificial lateral line canals. Beilstein J. Nanotechnol. 2(1), 276–283 (2011)

    Article  Google Scholar 

  38. Herzog, H., Steltenkamp, S., Klein, A., et al.: Micro-machined flow sensors mimicking lateral line canal neuro-masts. Micromachines 6, 1189–1212 (2015)

    Article  Google Scholar 

  39. Dagamseh, A.M.K., Lammerink, T.S.J., Kolster, M.L., et al.: Dipole-source localization using biomimetic flow - sensor arrays positioned as lateral-line system. Sens. Actuators, A 162(2), 355–360 (2010)

    Article  Google Scholar 

  40. Chen, J., Engel, J., Chen, N., et al.: Artificial lateral line and hydrodynamic object tracking. In: IEEE International Conference on MICRO Electro Mechanical Systems MEMS 2006, pp. 694–697. IEEE, Istanbul (2006)

    Google Scholar 

  41. Liu, P., Zhu, R., Que, R.: A flexible flow sensor system and its characteristics for fluid mechanics measurements. Sensors 9(12), 9533–9543 (2009)

    Article  Google Scholar 

  42. Zhu, Z., Horiuchi, T., Kruusamäe, K., et al.: Influence of ambient humidity on the voltage response of ionic polymer-metal composite sensor. J. Phys. Chem. B 120(12), 3215–3225 (2016)

    Article  Google Scholar 

  43. Kocer, B., Zangrilli, U., Akle, B., et al.: Experimental and theoretical investigation of ionic polymer transducers in shear sensing. J. Intell. Mater. Syst. Struct. 14, 1–13 (2014)

    Google Scholar 

  44. Ahrari, A., Lei, H., Deb, K., et al.: Robust Design Optimization of Artificial Lateral Line System [EB/OL]. http://pdfs.semanticscholar.org/85ab/9776ef0d412bed74811c9c9528d771561743.pdf. Accessed 06 May 2018

  45. Zhong, K.: Design and environmental perception of artificial lateral line system for robotic fish. East China Jiaotong university, Nanchang (2014)

    Google Scholar 

  46. Zheng, X., Wang, C., Fan, R., et al.: Artificial lateral line based local sensing between two adjacent robotic fish. Bioinspiration Biomimetics 13(1), 016002 (2017)

    Article  Google Scholar 

  47. Hu, B., Hua, C., Chen, C., et al.: MUBFP: multi-user beam-forming and partitioning for sum capacity maximization in MIMO systems. IEEE Veh. Technol. Soc. 66(1), 233–245 (2016)

    Google Scholar 

  48. Lin, X., Tao, M., Xu, Y., et al.: Outage probability and finite-SNR diversity-multiplexing tradeoff for two-way relay fading channels. IEEE Trans. Veh. Technol. 62(7), 3123–3136 (2013)

    Article  Google Scholar 

  49. Vaidyanathan, P.P., Pal, P.: Sparse sensing with co-prime samplers and arrays. IEEE Trans. Sig. Process. 59(2), 573–586 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Vaidyanathan, P.P.: Theory of sparse coprime sensing in multiple dimensions. IEEE Trans. Sig. Process. 59(8), 3592–3608 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Abdulsadda, A.T., Tan, X.B.: Underwater source localization using an IPMC-based artificial lateral line. In: IEEE International Conference on Robotics and Automation, pp. 2719–2724. IEEE, Shanghai (2011)

    Google Scholar 

  52. Wu, N.L., Wu, C., Tong, G.E., et al.: Flow recognition of underwater vehicle based on the perception mechanism of lateral line. J. Mech. Eng. 52(13), 54–59 (2016)

    Article  Google Scholar 

  53. Boulogne, L.H., Wolf, B.J., Wiering, M.A., et al.: Performance of neural networks for localizing moving objects with an artificial lateral line. Bioinspiration Biomimetics 12(5), 056009 (2017)

    Article  Google Scholar 

  54. Dagamseh, A., Wiegerink, R., Lammerink, T., et al.: Artificial lateral-line system for imaging dipole sources using beamforming techniques. Procedia Eng. 25(35), 779–782 (2011)

    Article  Google Scholar 

  55. Dagamseh, A., Wiegerink, R., Lammerink, T., et al.: Imaging dipole flow sources using an artificial lateral-line system made of biomimetic hair flow sensors. J. R. Soc. Interface 10(83), 20130162 (2013)

    Article  Google Scholar 

  56. Kamal, S., Mohammed, S.K., Pillai, P.R.S., et al.: Deep learning architectures for underwater target recognition. In: 2013 Ocean Electronics, pp. 48–54. IEEE, Kochi (2013)

    Google Scholar 

  57. Cao, X., Zhang, X., Yu, Y., et al.: Deep learning-based recognition of underwater target. In: 2016 IEEE International Conference on Digital Signal Processing, pp. 89–93. IEEE, Beijing (2016)

    Google Scholar 

  58. Chen, Y., Xu, X.: The research of underwater target recognition method based on deep learning. In: IEEE International Conference on Signal Processing, Communications and Computing, pp. 1–5. IEEE, Xiamen (2017)

    Google Scholar 

  59. Zhu, P., Isaacs, J., Fu, B., et al.: Deep learning feature extraction for target recognition and classification in underwater sonar images. In: IEEE Conference on Decision and Control, pp. 2724–2731. IEEE, Melbourne, Australia (2017)

    Google Scholar 

  60. Liu, G., Gao, S., Sarkodie, G., et al.: A novel biomimetic sensor system for vibration source perception of autonomous underwater vehicles based on artificial lateral lines. Measur. Sci. Technol. 29, 125102 (2018)

    Article  Google Scholar 

  61. Hu, Q., Liu, Y., Zhao, Z.Y.: Intelligent detection for artificial lateral line of bio-inspired robotic fish using EMD and SVMs. In: 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia, pp. 106–111 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, Q., Wei, C., Liu, Y., Zhao, Z. (2019). A Review of Biomimetic Artificial Lateral Line Detection Technology for Unmanned Underwater Vehicles. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11741. Springer, Cham. https://doi.org/10.1007/978-3-030-27532-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27532-7_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27531-0

  • Online ISBN: 978-3-030-27532-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics