Skip to main content

Analysis and Application of the Bending Actuators Used in Soft Robotics

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11741))

Included in the following conference series:

Abstract

Two types of soft bending actuators with the rib structure and the pleated structure are introduced in this study. We illustrate the advantages of the two types of actuators, as well as their applicability to different tasks. We build a finite element model to simulate the deformation of the two actuators under the internal pressure. The simulation result shows a visible difference between the responses of the two actuators to the same internal pressure. We qualitatively explain the reason for these differences based on the simulation result. The two actuators are made using the same process, which is briefly described in the work. We establish two prototypes of soft robots, a robotic gripper and a robotic fishtail, which are used to verify the applicability of the actuator with pleated structure and actuator with rib structure respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paez, L., Agarwal, G., Paik, J.: Design and analysis of a soft pneumatic actuator with origami shell reinforcement. Soft Robot. 3(3), 109–119 (2016)

    Article  Google Scholar 

  2. Sedal, A., Bruder, D., Bishop-Moser, J., Vasudevan, R., Kota, S.: A continuum model for fiber-reinforced soft robot actuators. J. Mech. Robot. 10(2), 024501–024509 (2018)

    Article  Google Scholar 

  3. Katzschmann, R.K., Marchese, A.D., Rus, D.: Autonomous object manipulation using a soft planar grasping manipulator. Soft Robot. 2(4), 155–164 (2015)

    Article  Google Scholar 

  4. Marchese, A.D., Komorowski, K., Onal, C.D., Rus, D.: Design and control of a soft and continuously deformable 2D robotic manipulation system. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 2189–2196 (2014)

    Google Scholar 

  5. Shepherd, R.F., et al.: Multigait soft robot. PNAS 108(51), 20400–20403 (2011)

    Article  Google Scholar 

  6. Hughes, J., Culha, U., Giardina, F., Guenther, F., Rosendo, A., Iida, F.: Soft manipulators and grippers: a review. Front. Robot. AI 3, 1–12 (2016)

    Article  Google Scholar 

  7. Wu, P., Jiangbei, W., Yanqiong, F.: The structure, design, and closed-loop motion control of a differential drive soft robot. Soft Robot. 5(1), 71–80 (2018)

    Article  Google Scholar 

  8. Correll, N., Önal, Ç.D., Liang, H., Schoenfeld, E., Rus, D.: Soft autonomous materials-using active elasticity and embedded distributed computation. In: Khatib, O., Kumar, V., Sukhatme, G. (eds.) Experimental Robotics. Springer Tracts in Advanced Robotics, vol. 79. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-28572-1_16

    Chapter  Google Scholar 

  9. Abidi, H., et al.: Highly dexterous 2-module soft robot for intra-organ navigation in minimally invasive surgery. Int. J. Med. Robot. Comput. Assist. Surg. 14(1), 1–9 (2018)

    Article  MathSciNet  Google Scholar 

  10. Manti, M., Hassan, T., Passetti, G., D’Elia, N., Laschi, C., Cianchetti, M.: A bioinspired soft robotic gripper for adaptable and effective grasping. Soft Robot. 2(3), 107–116 (2015)

    Article  Google Scholar 

  11. Jusufi, A., Vogt, D.M., Wood, R.J., Lauder, G.V.: Undulatory swimming performance and body stiffness modulation in a soft robotic fish-inspired physical model. Soft Robot. 4(3), 202–210 (2017)

    Article  Google Scholar 

  12. Ilievski, F., Mazzeo, A.D., Shepherd, R.F., Chen, X., Whitesides, G.M.: Soft robotics for chemists. Angew. Chem. 123(8), 1930–1935 (2011)

    Article  Google Scholar 

  13. Renda, F., Giorgio-Serchi, F., Boyer, F., Laschi, C., Dias, J., Seneviratne, L.: A unified multi-soft-body dynamic model for underwater soft robots. Int. J. Robot. Res. 37(6), 648–666 (2018)

    Article  Google Scholar 

  14. Marchese, A.D., Onal, C.D., Rus, D.: Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robot. 1(1), 75–87 (2014)

    Article  Google Scholar 

  15. Marchese, A.D., Katzschmann, R.K., Rus, D.: Whole arm planning for a soft and highly compliant 2D robotic manipulator. In: IEEE International Conference on Intelligent Robots and Systems, pp. 554–560 (2014)

    Google Scholar 

  16. Onal, C.D., Chen, X., Whitesides, G.M., Rus, D.: Soft mobile robots with on-board chemical pressure generation. In: Christensen, H.I., Khatib, O. (eds.) Robotics Research. STAR, vol. 100, pp. 525–540. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_30

    Chapter  Google Scholar 

  17. Alici, G., Canty, T., Mutlu, R., Hu, W., Sencadas, V.: Modeling and experimental evaluation of bending behavior of soft pneumatic actuators made of discrete actuation chambers. Soft Robot. 5(1), 24–35 (2018)

    Article  Google Scholar 

  18. Zhang, Z., Philen, M., Neu, W.: A biologically inspired artificial fish using flexible matrix composite actuators: analysis and experiment. Smart Mater. Struct. 19(9), 094017 (2010)

    Article  Google Scholar 

  19. Luo, M., Agheli, M., Onal, C.D.: Theoretical modeling and experimental analysis of a pressure-operated soft robotic snake. Soft Robot. 1(2), 136–146 (2014)

    Article  Google Scholar 

  20. Marchese, A.D., Rus, D.: Design, kinematics, and control of a soft spatial fluidic elastomer manipulator. Int. J. Robot. Res. 35(7), 840–869 (2016)

    Article  Google Scholar 

  21. Polygerinos, P., et al.: Modeling of soft fiber-reinforced bending actuators. IEEE Trans. Rob. 31(3), 778–789 (2015)

    Article  Google Scholar 

  22. Katzschmann, R.K., Marchese, A.D., Rus, D.: Hydraulic autonomous soft robotic fish for 3D swimming. In: Hsieh, M.Ani, Khatib, O., Kumar, V. (eds.) Experimental Robotics. STAR, vol. 109, pp. 405–420. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-23778-7_27

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqing Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, W., Chen, J., Wang, X., Hu, J., Li, Y. (2019). Analysis and Application of the Bending Actuators Used in Soft Robotics. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11741. Springer, Cham. https://doi.org/10.1007/978-3-030-27532-7_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27532-7_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27531-0

  • Online ISBN: 978-3-030-27532-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics