Skip to main content

A Soft Robotic Glove for Hand Rehabilitation Using Pneumatic Actuators with Variable Stiffness

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11742))

Abstract

Traditional rigid robots exist many problems in rehabilitation training. Soft robotics is conducive to breaking the limitations of rigid robots. This paper presents a soft wearable device for the rehabilitation of hands, including soft pneumatic actuators that are embedded in the device for motion assistance. The key feature of this design is the stiffness of each actuator at different positions is different, which results in the bending posture of the actuator is more accordant with the bending figure of human hand. In addition, another key point is the use of a fabric sleeves allow actuators to gain greater bending force when pressurized, which gives the hand greater bending force. We verified the feasibility of actuator through simulation, the performance of soft actuator and the device also are evaluated through experiments. Finally, the results show that this device can finish some of the hand rehabilitation tasks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yap, H.K., Lim, J.H., Goh, J.C.H., et al.: Design of a soft robotic glove for hand rehabilitation of stroke patients with clenched fist deformity using inflatable plastic actuators. J. Med. Devices 10(4), 044504 (2016)

    Article  Google Scholar 

  2. Kemna, S., Culmer, P.R., Jackson, A.E., et al.: Developing a user interface for the iPAM stroke rehabilitation system. In: IEEE International Conference on Rehabilitation Robotics, pp. 879–884. IEEE (2009)

    Google Scholar 

  3. Cai, Z., Tong, D., Meadmore, K.L., et al.: Design & control of a 3D stroke rehabilitation platform. In: IEEE International Conference on Rehabilitation Robotics (2011). 5975412

    Google Scholar 

  4. Lum, P.S., Burgar, C.G., Van der Loos, M.: MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: a follow-up study. J. Rehabil. Res. Dev. 43(5), 631 (2006)

    Article  Google Scholar 

  5. Pehlivan, A.U., Celik, O., O’Malley, M.K.: Mechanical design of a distal arm exoskeleton for stroke and spinal cord injury rehabilitation. In: IEEE International Conference on Rehabilitation Robotics. IEEE (2011). 5975428

    Google Scholar 

  6. Polygerinos, P., Wang, Z., Galloway, K.C., et al.: Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 73(C), 135–143 (2015)

    Article  Google Scholar 

  7. Yap, H.K., Lim, J.H., Nasrallah, F., et al.: MRC-glove: A fMRI compatible soft robotic glove for hand rehabilitation application. In: IEEE International Conference on Rehabilitation Robotics, pp. 735–740. IEEE (2015)

    Google Scholar 

  8. Yap, H.K., Lim, J.H., Nasrallah, F., et al.: A soft exoskeleton for hand assistive and rehabilitation application using pneumatic actuators with variable stiffness. In: IEEE International Conference on Robotics and Automation, pp. 4967–4972. IEEE (2015)

    Google Scholar 

  9. Yap, H.K., Khin, P.M., Koh, T.H., et al.: A fully fabric-based bidirectional soft robotic glove for assistance and rehabilitation of hand impaired patients. IEEE Robot. Autom. Lett. PP(99), 1 (2017)

    Google Scholar 

  10. Mosadegh, B., Polygerinos, P., Keplinger, C., et al.: Soft robotics: pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 24(15), 2109 (2014)

    Article  Google Scholar 

  11. Galloway, K.C., Polygerinos, P., Walsh, C.J., et al.: Mechanically programmable bend radius for fiber-reinforced soft actuators. In: International Conference on Advanced Robotics. IEEE (2014)

    Google Scholar 

  12. Yap, H.K., Lim, J.H., Nasrallah, F., et al.: Design and preliminary feasibility study of a soft robotic glove for hand function assistance in stroke survivors. Front. Neurosci. 11, 547 (2017)

    Article  Google Scholar 

  13. Yap, H.K., Ang, B.W., Lim, J.H., et al.: A fabric-regulated soft robotic glove with user intent detection using EMG and RFID for hand assistive application. In: IEEE International Conference on Robotics and Automation, pp. 3537–3542. IEEE (2016)

    Google Scholar 

  14. Yap, H.K., Lim, J.H., Nasrallah, F., et al.: Characterisation and evaluation of soft elastomeric actuators for hand assistive and rehabilitation applications. J. Med. Eng. Technol. 40, 1–11 (2016)

    Article  Google Scholar 

  15. Tong, M.: Design, Modeling and Fabrication of a Massage Neck Support Using Soft Robot Mechanis. The Ohio State University (2014)

    Google Scholar 

  16. Aubin, P.M., Sallum, H., Walsh, C., et al.: A pediatric robotic thumb exoskeleton for at-home rehabilitation: the Isolated Orthosis for Thumb Actuation (IOTA). In: Proceedings of IEEE International Conference on Rehabilitation Robotics, pp. 1–6 (2013)

    Google Scholar 

Download references

Acknowledgement

This research is supported by National Natural Science Foundation of China (51775284), Primary Research & Development Plan of Jiangsu Province (BE2018734), Joint Research Fund for Overseas Chinese, Hong Kong and Macao Young Scholars (61728302), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX18_0299).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengyu Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, Y., Xu, F., Song, Y., Cao, X., Meng, F. (2019). A Soft Robotic Glove for Hand Rehabilitation Using Pneumatic Actuators with Variable Stiffness. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11742. Springer, Cham. https://doi.org/10.1007/978-3-030-27535-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27535-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27534-1

  • Online ISBN: 978-3-030-27535-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics