Skip to main content

A Smooth Gait Planning Framework for Quadruped Robot Based on Virtual Model Control

  • Conference paper
  • First Online:
Book cover Intelligent Robotics and Applications (ICIRA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11743))

Included in the following conference series:

Abstract

The smooth gait of robot plays an essential role in the locomotion, which influences by constraint from ground. Most of the planning algorithms centered on the characteristics of periodicity and amplitude of joint angles, and lost sight of the continuity of displacement and velocity of food trajectories. In this paper, the rhythmicity of robot body was studied in linear motion, according of which the smooth gait constrained by boundary conditions was planned by Hermite interpolation. In order to ensure the stability of robot posture during the movement, the strategy of virtual model control (VMC) was introduced and PD control method was used to track joint angles. The results and feasibility were verified by dynamics simulations finally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ajallooeian, M., Pouya, S., Sprowitz, A., Ijspeert, A.: Central pattern generators augmented with virtual model control for quadruped rough terrain locomotion. In: Proceedings - IEEE International Conference on Robotics and Automation, May 2013

    Google Scholar 

  2. Boaventura, T., Buchli, J., Semini, C., Caldwell, D.G.: Model-based hydraulic impedance control for dynamic robots. IEEE Trans. Robot. 31(6), 1324–1336 (2015)

    Article  Google Scholar 

  3. Buchli, J., Ijspeert, A.J.: Self-organized adaptive legged locomotion in a compliant quadruped robot. Auton. Rob. 25(4), 331 (2008). https://doi.org/10.1007/s10514-008-9099-2

    Article  Google Scholar 

  4. Estremera, J., Waldron, K.J.: Thrust control, stabilization and energetics of a quadruped running robot. Int. J. Robot. Res. 27, 1135–1151 (2008)

    Article  Google Scholar 

  5. Focchi, M., del Prete, A., Havoutis, I., Featherstone, R., Caldwell, D.G., Semini, C.: High-slope terrain locomotion for torque-controlled quadruped robots. Auton. Robots 41(1), 259–272 (2017). https://doi.org/10.1007/s10514-016-9573-1

    Article  Google Scholar 

  6. Hui-shu, M., Jian-Jun, F.: Foot trajectory planning and optimization simulation of low foot-terrain impact by quadruped robot based on the Trot Gait. J. Electr. Electron. Eng. 6(1), 26 (2018). http://sciencepg.com/journal/paperinfo?journalid=239&paperId=10029462

  7. Hutter, M., Gehring, C., Höpflinger, M.A., Blösch, M., Siegwart, R.: Toward combining speed, efficiency, versatility, and robustness in an autonomous quadruped. IEEE Trans. Robot. 30(6), 1427–1440 (2014)

    Article  Google Scholar 

  8. Jeong, K.M., Oh, J.H.: An aperiodic straight motion planning method for a quadruped walking robot. Auton. Robots 2(1), 29–41 (1995). https://doi.org/10.1007/BF00735437

    Article  Google Scholar 

  9. Kimura, H., Akiyama, S., Sakurama, K.: Realization of dynamic walking and running of the quadruped using neural oscillator. Auton. Robots 7(3), 247–258 (1999). https://doi.org/10.1023/A:1008924521542

    Article  Google Scholar 

  10. Koo, I.M., et al.: Biologically inspired gait transition control for a quadruped walking robot. Auton. Robots 39(2), 169–182 (2015). https://doi.org/10.1007/s10514-015-9433-4

    Article  MathSciNet  Google Scholar 

  11. Ma, J., Bajracharya, M., Susca, S., Matthies, L., Malchano, M.: Real-time pose estimation of a dynamic quadruped in GPS-denied environments for 24-hour operation. Int. J. Robot. Res. 35, 631–653 (2015)

    Article  Google Scholar 

  12. Moro, F.L., et al.: Horse-like walking, trotting, and galloping derived from kinematic Motion Primitives (kMPs) and their application to walk/trot transitions in a compliant quadruped robot. Biol. Cybern. 107(3), 309–320 (2013). https://doi.org/10.1007/s00422-013-0551-9

    Article  MathSciNet  Google Scholar 

  13. Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., Schaal, S.: Optimal distribution of contact forces with inverse dynamics control. Int. J. Robot. Res. 32, 280–298 (2013)

    Article  Google Scholar 

  14. Shao, J., Ren, D., Gao, B.: Recent advances on gait control strategies for hydraulic quadruped robot. Recent Patents Mech. Eng. 11, 15–23 (2018)

    Article  Google Scholar 

  15. Soo Park, H., Floyd, S., Sitti, M.: Roll and pitch motion analysis of a biologically inspired quadruped water runner robot. Int. J. Robot. Res. 29, 1281–1297 (2010)

    Article  Google Scholar 

  16. Sprowitz, A., Tuleu, A., Vespignani, M., Ajallooeian, M.: Towards dynamic trot gait locomotion design, control, and experiments with cheetah-cub, a compliant quadruped robot. Int. J. Robot. Res. 35, 649–655 (2013)

    Google Scholar 

  17. Ugurlu, B., Havoutis, I., Semini, C., Kayamori, K., Caldwell, D.G., Narikiyo, T.: Pattern generation and compliant feedback control for quadrupedal dynamic trot-walking locomotion: experiments on RoboCat-1 and HyQ. Auton. Robots 38(4), 415–437 (2015). https://doi.org/10.1007/s10514-015-9422-7

    Article  Google Scholar 

  18. Yi, S.: Reliable gait planning and control for miniaturized quadruped robot pet. Mechatronics 20(4), 485–495 (2010). http://www.sciencedirect.com/science/article/pii/S0957415810000747

    Article  Google Scholar 

  19. Zico Kolter, J., Ng, A.Y.: The Stanford LittleDog: a learning and rapid replanning approach to quadruped locomotion. Int. J. Robot. Res. 30(2), 150–174 (2011). https://doi.org/10.1177/0278364910390537

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported, in part, by the National Natural Science Foundation of China (No. 51875393) and by the China Advance Research for Manned Space Project (No. 030601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tian, J., Ma, C., Wei, C., Zhao, Y. (2019). A Smooth Gait Planning Framework for Quadruped Robot Based on Virtual Model Control. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11743. Springer, Cham. https://doi.org/10.1007/978-3-030-27538-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27538-9_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27537-2

  • Online ISBN: 978-3-030-27538-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics