Skip to main content

Surface Defect Inspection Under a Small Training Set Condition

  • Conference paper
  • First Online:
Book cover Intelligent Robotics and Applications (ICIRA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11743))

Included in the following conference series:

Abstract

The detection of surface defects in industrial production is an important technology for controlling product quality. Many researchers have applied deep learning methods to the field of surface defect detection. However, obtaining defect sample data in industrial production is difficult, and the number of samples available to train detection networks is not sufficient. Based on the you only look once (YOLO) detection system, we propose a lightweight small sample detection network (SSDN) to overcome the problem of fewer samples in surface defect detection. The SSDN is demonstrated to be a suitable network to represent defect image features as it is better at feature extraction and easier to train. We used only 10/type images to train the SSDN model without data enhancement techniques and achieved excellent results (average accuracy 99.72%) on defect detection benchmark data. Experimental results verify the robustness of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou, W., et al.: A sparse representation based fast detection method for surface defect detection of bottle caps. Neurocomputing 123, 406–414 (2014)

    Article  Google Scholar 

  2. Feng, C., Liu, M.Y., Kao, C.C., Lee, T.Y.: Deep active learning for civil infrastructure defect detection and classification. Mitsubishi Electric Research Laboratories (2017). https://www.merl.com/publications/docs/TR2017-034.pdf. Accessed 6 June 2018

  3. Zhang, Y., Li, T., Li, Q.: Defect detection for tire laser stereography image using curvelet transform based edge detector. Opt. Laser Technol. 47(4), 64–71 (2013)

    Article  Google Scholar 

  4. Li, W.C., Tsai, D.M.: Wavelet-based defect detection in solar wafer images with inhomogeneous texture. Pattern Recogn. 45(2), 742–756 (2012)

    Google Scholar 

  5. Mei, S., Yang, H., Yin, Z.: An unsupervised-learning-based approach for automated defect inspection on textured surfaces. IEEE Trans. Instrum. Meas. 67(6), 1266–1277 (2018)

    Article  Google Scholar 

  6. Mei, S., Wang, Y., Wen, G.: Automatic fabric defect detection with a multi-scale convolutional denoising autoencoder network model. Sensors 18(4), 1064 (2018)

    Article  Google Scholar 

  7. Wang, X., Dong, R., Li, B.: TFT-LCD mura defect detection based on ICA and multi-channels fusion. In: 2016 3rd International Conference on Information Science and Control Engineering (ICISCE), pp. 687–691. IEEE, Beijing (2016)

    Google Scholar 

  8. Chen, J., Liu, Z., Wang, H., Núñez, A., Han, Z.: Automatic defect detection of fasteners on the catenary support device using deep convolutional neural network. IEEE Trans. Instrum. Meas. 67(2), 257–269 (2018)

    Article  Google Scholar 

  9. Lin, H.D.: Tiny surface defect inspection of electronic passive components using discrete cosine transform decomposition and cumulative sum techniques. Image Vis. Comput. 26(5), 603–621 (2008)

    Article  Google Scholar 

  10. Aiger, D., Talbot, H.: The phase only transform for unsupervised surface defect detection. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 295–302. IEEE, San Francisco (2010)

    Google Scholar 

  11. Huang, J.X., Li, D., Ye, F., et al.: Detection of surface defection of solder on flexible printed circuit. Opt. Precis. Eng. 18(11), 2443–2453 (2010)

    Google Scholar 

  12. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: International Conference on Computer Vision & Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893. IEEE, San Diego (2005)

    Google Scholar 

  13. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  14. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  15. Rätsch, G., Onoda, T., Müller, K.R.: Soft margins for AdaBoost. Mach. Learn. 42(3), 287–320 (2001)

    Article  Google Scholar 

  16. Wang, T., Chen, Y., Qiao, M., Snoussi, H.: A fast and robust convolutional neural network-based defect detection model in product quality control. Int. J. Adv. Manuf. Technol. 94(9–12), 3465–3471 (2018)

    Article  Google Scholar 

  17. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587. IEEE, Columbus (2014)

    Google Scholar 

  18. Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)

    Article  Google Scholar 

  19. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788. IEEE, Las Vegas (2016)

    Google Scholar 

  20. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  21. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125. IEEE, Hawaii (2017)

    Google Scholar 

  22. Ren, S., He, K., Girshick, R., Sun, S.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2016)

    Article  Google Scholar 

  23. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  24. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271. IEEE, Hawaii (2017)

    Google Scholar 

  25. Redmon, J., Farhadi, A.: YOLOV3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  26. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of the International Conference on Learning Representations (ICLR), San Diego (2015)

    Google Scholar 

  28. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)

  29. Pedoeem, J., Huang, R.: YOLO-LITE: a real-time object detection algorithm optimized for non-GPU computers. arXiv preprint arXiv:1811.05588 (2018)

  30. Weimer, D., Scholz-Reiter, B., Shpitalni, M.: Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection. CIRP Ann. 65(1), 417–420 (2016)

    Article  Google Scholar 

  31. Siebel, N.T., Sommer, G.: Learning defect classifiers for visual inspection images by neuro-evolution using weakly labelled training data. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 3925–3931. IEEE, Hong Kong (2008)

    Google Scholar 

  32. Timm, F., Barth, E.: Non-parametric texture defect detection using Weibull features. In: Image Processing: Machine Vision Applications IV, vol. 7877, p. 78770J. International Society for Optics and Photonics, San Francisco (2011)

    Google Scholar 

Download references

Acknowledgments

This work is supported by a grant from the National Natural Sciences Foundation of China (51775214). All the authors are grateful for the funding. In addition, the authors especially thank the contributors to the DAGM2007 surface defect databases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, W., Zhang, Y., Shi, H. (2019). Surface Defect Inspection Under a Small Training Set Condition. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11743. Springer, Cham. https://doi.org/10.1007/978-3-030-27538-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27538-9_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27537-2

  • Online ISBN: 978-3-030-27538-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics