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Abstract. This paper proposes an enhancement of convolutional neural
networks for object detection in resource-constrained robotics through a
geometric input transformation called Visual Mesh. It uses object geome-
try to create a graph in vision space, reducing computational complexity
by normalizing the pixel and feature density of objects. The experiments
compare the Visual Mesh with several other fast convolutional neural
networks. The results demonstrate execution times sixteen times quicker
than the fastest competitor tested, while achieving outstanding accuracy.
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1 Introduction

This paper introduces a Visual Mesh that defines an input transformation for
convolutional neural networks (CNN). By normalizing object size, the Visual
Mesh accounts for differences in an object’s appearance when detecting and
localizing it. This allows simpler network architectures to be used and reduces
oversampling, improving the computational performance substantially.

CNNs require powerful hardware to perform in real-time. Despite this, some
networks have been developed to run on constrained hardware with limited suc-
cess. Speck et al. [I3] built a CNN for detecting the coordinates of a soccer ball
on an image. When implemented on their target platform it ran in 26 ms and
had an accuracy of 58 % in x and 52 % in y. The accuracy dropped to less than
30 % in distances over two meters. Therefore, this approach had limited success
in object localization.

Faster and more accurate systems have been developed that only perform
object classification. These systems utilize color segmentation to provide pro-
posals for a CNN to classify. As a result they were much faster than systems
that localize objects, however, color segmentation is sensitive to changes in light-
ing conditions and must be manually calibrated. Javadi et al. [7] utilized such
a system for detecting humanoid robots. The best performing network ran in
2.36 ms with 97.56 % accuracy per proposal on an Intel Core i5 2.5 GHz. Cruz
et al. [5] developed a system to classify Aldebaran NAO robots. This network
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executed in &1 ms per proposal. Albani et al. [2] and Bloisi et al. [3] utilized a
similar technique for ball detection. This system was implemented on an Alde-
baran NAO robot and processed 14-22 frames per second as the only process
running. The reliance on color segmentation for proposals limits these networks

to color coded environments.
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Fig.1: Geometry for calculating ¢,,41 and A0,

2 Visual Mesh Geometry

The Visual Mesh detects objects that lie on a plane at a known distance and ori-
entation from the camera. This plane is referred to as the observation plane. The
geometry of the Visual Mesh can be described using Figure [1| where the camera
is assumed to be at point A. The target object’s geometry determines the pixel
resolution, i.e., the placement of points in the Visual Mesh. The geometry for
two target object shapes are analyzed in this paper: Circles are appropriate for
detecting two-dimensional objects on the observation plane (Figure . Spheres
are appropriate for three-dimensional objects that have an approximately equal
extension in all dimensions (Figure . More complex objects such as cylinders
could also be modeled.

For establishing the Visual Mesh two orthogonal angular components have to
be determined. These are A¢,, and A, and are given by the angular diameters
of the target object with respect to points A and B. The height h of the camera
above the observation plane and the radius r are required to calculate the mesh.

The first component is A¢,, := ¢,+1 — ¢, and is determined by the incli-
nations ¢,, from directly below the camera. A series ¢,, n = 0,.., N is given
recursively by function f: R = R, ¢p11 = f(¢n) = én + A, where ¢g = 0.

The second component, Af,,, is measured around point B in the observation
plane and depends on ¢,, for both, circle and sphere objects (Figure .
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The inclinations (¢, )n=0,...n induce a series of nested concentric cones with
vertex at A and center axis orthogonal to the observation plane. Each of these
cones is radially segmented at its basis by A#f,, and the tangent rays from B.

2.1 Circle

The geometry for circles is shown in Figure[Tal ¢, for a circle is calculated by
adding the diameter 27 of the circle to its distance BD to obtain

Gni1 = tan™?! (tan (dn) + 2}:) (1)

Figure [Ldf shows the geometry for Af,, within the 2D observation plane where

Af, = 2sin~! (M) (2)

This formulation of A#,, has a singularity when the center of the object is closer
than its radius making it more difficult for the mesh to detect objects directly
below the camera.

2.2 Sphere

For spheres A¢,, is determined by the sphere’s shadow from a virtual light at A
and it decreases more slowly with n than for circles. Figure [Th] shows how ¢, 41
is calculated. Using the triangle AAEZ and edges AE and EZ gives

_1 (de+d,
¢ny1 = 2tan! (Z) — ¢n

-Tr

= 2tan! (W + tan (qﬁn)) — o

The calculation of A6, is the same as for circles and uses Equation .

2.3 Object Dependent Sample Density

The current description guarantees one point in the mesh for the target object.
For use in computer vision, multiple sample points per object are required. Let’s
assume our object requires k pixels to be recognizable. In the Visual Mesh this &k
corresponds to the number of intersections of the ¢,, rings with the object. A ¢,
ring is obtained by rotating vector zﬁ about the axis AB. If A¢,, and A#f,, are
reduced, the spacing between the ¢,, rings will be decreased which leads to more
intersections with the target object.
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An increase in the number of sample points
for the circle model can be achieved by dividing
Af,, in by k and also the diameter of the
circle by k, i.e., replacing 2r in by 2r/k.

In the sphere model k& sample points can be
achieved by creating a version of the mesh where
the original sphere is replaced by smaller spheres
so that the original sphere intersects with k ¢,
rings associated with the smaller spheres (Fig-
ure . If k is expressed as fraction k = £,
p,q € N— {0}, the equation relating the radii of
the spheres is given by f7(¢g,70) = fP? (o, r1)
where rg is the radius of the target and ry is

Fig. 2: Multiple sample

the I“adiuS Of the Sma:ll Spheres in the IneSh A points on a Sphere can be
solution for r; can be obtained numerically. calculated by finding the

2.4 Graph Structure of the Mesh

Fig.3: The Visual Mesh projected onto
an image. Note that four ¢, rings pass
through the ball regardless of its loca-
tion.

smaller sphere’s radius.

A mesh can be generated using the
points around ¢, rings (see arcs in
Figure . In each ¢, ring, points are
separated by Af,,. This ensures that
the number of points within an object
falls within a small range (41 in ¢ and
). Each point is connected with edges
to the two adjacent points on the same
¢n, ring as well as to the two nearest
points on the ¢,+1 rings. The single
point below the camera is connected
by six equally spaced points. Project-
ing these points onto an image creates
amesh structure as shown in Figure[3]

Another method to view the mesh
is to project the ¢,, rings onto concen-
tric circles as in Figure [l Due to per-
spective, the size of objects decreases

in distance within the original image, while the Visual Mesh ensures objects are

always the same size.

2.5 Network

Once the image data has been transformed by the Visual Mesh, it exists as a
graph, rather than a grid of pixels. The pixels no longer have nine neighbors,
but six. This changes how convolutions occur when executed on the graph.

For example, a 3 x 3 convolution in a typical CNN accesses eight pixels
around a central pixel. The equivalent operation in the graph accesses points
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Fig.4: The Visual Mesh projected in concentric rings. Due to perspective, the
size of the ball decreases with distance in the original (left). In the Visual Mesh,
the ball has always a similar size (right).

with a graph distance of one, its six neighbors. This has a positive impact on
performance, as two fewer values need to be considered. Larger convolutions
would be equivalent to operating on points at a larger maximum graph dis-
tance. For example, a 5 X 5 convolution would operate on all points that have a
maximum graph distance of two to the central point.

3 Evaluation of the Visual Mesh

3.1 Dataset

A semi-synthetic dataset with masks that segment out the ball was created for
training. By using 360° high dynamic range (HDR) images to provide image-
based lighting, along with physics-based rendering, realistic semi-synthetic scenes
were generated. From this, the mask images, as well as the camera orientation
and position can be obtained.

Using a number of different HDR scenes taken from RoboCup 2017, the
NUbots’ laboratory and onlind'} as well as over a hundred different soccer ball

! HDRI Haven https://hdrihaven.com/


https://hdrihaven.com/

6 T. Houliston, S. K. Chalup

designs, over 160,000 images were generated. These soccer ball designs were not
limited to 50% white as per RoboCup rules and included balls of various colors.
Each of these images varied the position of the soccer ball and switched between
equisolid and rectilinear camera projections.

The distance of the balls from the camera varied between zero and ten meters.
The intensity of the lighting varied in the scene. The rendered soccer ball was
selected from a set of 140 different models. The distribution of distances was
designed to provide a uniform variation in the pixel size of the ball. This allowed a
consistent variation in the angular diameter of the ball in the image. It prevented
a large number of visually small balls that would have occurred with a uniform
distribution over distance.

3.2 Network Architecture

Each node in the Visual Mesh performed a 3 x 3 convolution using its six neigh-
bors. These layers were stacked to varying depths from two to nine and with
output widths varying from two to eight, resulting in a fully convolutional net.

Networks of width four performed significantly better than networks of other
widths as the hardware utilized can vectorize on four elements. The results dis-
cussed in Section [3.4] only include network widths of four.

Networks were also tested with ReLU [9], ELU [4] and SELU [§]. SELU
consistently outperformed ELU and ReLU in terms of training time and network
accuracy. SELU is computationally more expensive than ReLLU but is similar to
that of ELU. Results in Section only include those tested with SELU.

The network depths used for evaluation were three, five, and nine layers.
These were chosen as their receptive fields were half, one and two ball radii,
respectively. This ensured the networks had sufficient contextual information to
correctly classify the ball.

In addition to these Visual Mesh networks, similar CNNs using a regular
hexagonal grid were trained. These networks allowed a comparison between the
Visual Mesh and a network that has equal computational cost due to selecting
the same number of pixels. This network provides a comparison to an equivalent
network without the constant sample density of the Visual Mesh.

3.3 Training

The training of these networks was undertaken using the TensorFlow library [IJ.
The pixel coordinates from the Visual Mesh and the indices of each pixel’s six
neighbors were used to apply the Visual Mesh at each layer. Once this gather
step was performed, the neural network steps were undertaken as normal.

When training these neural networks, the number of ball points and non-ball
points were balanced. This was achieved by selecting an equal number of points
from each class. The backpropagation gradients were only calculated from the
selected points.
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This method was chosen instead of the traditional method of weighting the
gradients intentionally. The majority of non-ball points in training images are
grass. As a result, the initial networks experienced over-fitting on the field.

Once the initial network was trained, the error in its classification of each
point in the image was used as a probability to select that point. This resulted in
fewer grass points selected in future training. This resampling was run twice, with
the probabilities added together with a 5% baseline probability. This greatly
improved the accuracy in subsequent training.

In addition to these networks, five convolutional network architectures were
fine-tuned on this dataset. These networks were SSD MobileNet and RCNN
Inception V2 trained using TensorFlow [I} 6] and YOLOv1 [10], YOLOv2 [11]
and YOLOv3 [12] trained using Darknetﬂ These networks were chosen as they
were regarded as some of the fastest real-time networks.

3.4 Results

Precision In addition to the Visual and hexagonal meshes, five typical CNNs
were also evaluated. Their results were measured using a 75 % IoU. 75 % was
chosen as 50 % was considered a poor match. With 50 % IoU, the center of the
detection can be at the edge of the object.

As shown in Figure the accuracy of the Visual Mesh consistently out-
performs the hexagonal mesh of an equivalent size. Increasing the depth of the
network increases its performance.

The performance of the Visual Mesh remains approximately constant as dis-
tance increases. However, as shown in Figure[5c|the performance of the hexagonal
mesh, as well as the other CNNs degrades with increased distance. Note that
as the generated data was made uniform over pixel size rather than distance,
the number of sample images falls off as distance increases. The fewer samples
increase noise in the plot.

The performance of the Visual Mesh exceeds the performance of the hexago-
nal mesh even when the number of points in the object is the same. The number
of points in both tested networks are equal at 2.5 m. Figure [pb|shows the number
of points in the Visual Mesh stays constant over distance, except for a peak at
0 m. This peak is when points are directly below the camera. This is a singularity
point for the Visual Mesh as it is currently implemented. The hexagonal mesh
has a decreasing number of points as distance increases.

Detections Figure[6a]shows a typical set of detections from each of the trained
networks. YOLOv1 is omitted as it performs strictly worse than YOLOv2. The
Visual Mesh has a good detection while the hexagonal mesh has several false
positives. The five other networks all detect the ball. YOLOv2 has a lower con-
fidence than the other networks on the dataset. SSD MobileNet, YOLOv2 and
YOLOv3’s bounding boxes are less accurate across the dataset.

2 Darknet http://pjreddie.com/darknet/
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Fig.5: (a) The Precision/Recall curve over all data.

(b) The number of sampled points in an object over distance (VM is Visual Mesh
HM is Hexagonal Mesh).

(c) The Average Precision of the detectors over distance.

The Visual Mesh excels at distant detections as shown in Figure [6b] Except
for the Visual Mesh and RCNN Inception V2, none of the other networks detect
the ball. RCNN Inception V2 has a poorly fitted bounding box. This is typical
of distant balls in the dataset.

Figure [6¢| shows how the Visual Mesh is able to use scale to identify target
objects. The hexagonal mesh found many false positives on objects that had a
different size than expected, but similar appearance as the target.

Execution performance Each network was tested on the CPU and GPU from
the Intel NUC7i7BNH as well as on an NVIDIA 1080Ti. The input images were
1280 x 1024 for all networks. SSD MobileNet and RCNN Inception V2 were not
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executed on the Intel GPU as TensorFlow does not support OpenCL at this
time. YOLOv3 was not executed as it is not supported by the OpenCL version
of Darknet. Table [I] summarizes the results with respect to execution time. The
times for all networks are measured from when the image is first sent to the
algorithm until the inferences are returned. Therefore, the time taken to project
Visual Mesh points is included.

Table 1: Execution performance: For the Visual Mesh on the Iris Plus Graphics
and the NVIDIA 1080Ti the device utilization was 70 % and 35 % respectively.
For all other cases utilization was at 100 %.

Intel Core |Intel Iris Plus|NVIDIA

i7 7567U | Graphics 650 | 1080Ti
Visual Mesh 5 1.64ms 2.10ms | 2.18ms
Visual Mesh 9 2.44ms 2.48ms | 2.25ms
YOLOv1 1468.24ms 721.13ms | 17.55ms
YOLOv2 1221.49ms 613.73ms | 16.13ms
YOLOv3 2651.33ms N/A 19.00ms
SSD MobileNet 37.76ms N/A 11.32ms
RCNN Inception V2| 1521.32ms N/A 47.75ms

3.5 Discussion and Conclusion

The results for the Visual Mesh show that consistent feature density improves
the accuracy of the network. When the Visual Mesh and the hexagonal mesh
had an equal number of points on the ball the Visual Mesh was more accurate.
As distance increased, the accuracy of the hexagonal mesh degraded while the
Visual Mesh remained consistent. This degradation can also be seen in other
networks as accuracy declines over distance.

The nine-layer Visual Mesh is used for the following comparisons. It provided
the highest accuracy and its computational performance was not significantly
worse than the five-layer Visual Mesh.

RCNN Inception V2 and YOLOv3 performed the best of the other networks
tested. While the other CNNs failed to detect distant objects, these networks
continued to detect them. However, the bounding boxes became increasingly
inaccurate. At a lower IoU threshold they have a higher detection rate. Visual
Mesh exceeds their performance after 4 m.

As seen in Table[T] the execution performance of the Visual Mesh exceeds that
of the other convolutional networks. Of these networks, only SSD MobileNet and
the Visual Mesh could be considered for real-time use on resource-constrained
systems. The performance of the Visual Mesh is fast enough that the transfer
times of images is a significant factor for GPU based computation. The NUC’s
CPU outperforms its GPU for the five-layer Visual Mesh because of this. The
NVIDIA 1080Ti also suffers this effect, resulting in only 35 % utilization.

The Visual Mesh has a number of advantages beyond its accuracy and speed.
As objects always have a similar number of points additional post-processing
options are available to improve accuracy. Within detected areas, metrics such
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as graph diameter can be used to filter out irrelevant areas. Additionally the
best fitting subgraph can be used to remove invalid points in a detection.

Higher resolution does not increase the computational cost of the Visual
Mesh. The number of points that are projected onto the image does not change
for the same camera lens and orientation. However, increased resolution will allow
the Visual Mesh to project points that are a greater distance from the camera.
If the resolution of the camera is insufficient for the level of detail requested,
the Visual Mesh will begin sampling the same pixel multiple times. The Visual
Mesh is still accurate with limited amounts of this duplicated data. However, as
the amount of information decreases, the accuracy of the network will decline.

As the distance to objects increases, typical networks must learn to account
for the differences in scale that occur. Often these differences are not well rep-
resented in the training data or, can be biased in the training data. This can
require additional training data to be generated by scaling. For the Visual Mesh,
this is not necessary as the object will always appear the same size. This reduces
the complexity of training as well as the complexity of the required network.

As the Visual Mesh is always oriented relative to the observation plane,
the resulting network is better able to handle changes in the orientation of the
camera. This form of transformational invariance only applies to rotations in
the camera, not rotations on the object. This can reduce the amount of training
required if the object can be assumed in a particular rotation. For example, if
extended to detect the goal posts the training data would not need to be modified
for different orientations of the camera as they would always be normal to the
observation plane. Without this invariance, training for goal posts would have
to include multiple orientations.

Networks based on the Visual Mesh also have an independence to the lens
used. As the sample points are always in the same place in the world, changing
to a different lens geometry does not change the points. This makes it easier to
train using data from different lenses and apply trained networks to new lenses.

The presented formulation of the Visual Mesh has two primary limitations.
One concern is that it cannot function when the height of objects are greater
than or equal to the height of the camera. In these cases, the Visual Mesh
correctly predicts that all objects are visible on the horizon. This results in a
single line of points. In practice, this does not afford good detection performance.
The second limitation is that objects that are directly below the camera fall into
a singularity. When in this singularity, twice as many points intersect with the
objects until they move beyond this position. This increases the complexity that
the Visual Mesh must learn.

The training and execution code for the Visual Mesh is available at https:
//github.com/Fastcode/VisualMesh.
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